
Dependency as Modality,

Parsing as Permutation

A Neurosymbolic Perspective

on Categorial Grammars

Published by

LOT phone: +31 20 525 2461
Binnengasthuisstraat 9
1012 ZA Amsterdam lot@uva.nl
The Netherlands http://www.lotschool.nl

Cover Illustration: Konstantinos Kogkalidis, Let’s learn GIMP in case the whole
academia thing goes awry (2022)

ISBN: 978-94-6093-433-9
DOI: https://dx.medra.org/10.48273/LOT0648
NUR: 616

©CC-BY-SA 3.01 Konstantinos Kogkalidis

You are free to:

Share – copy and redistribute the material in any medium or format
Adapt – remix, transform, and build upon the material

under the following terms:

Attribution - You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable man-
ner, but not in any way that suggests I endorse you or your use.
NonCommercial – You may not use the material for commercial purposes.
ShareAlike – If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

1https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

https://dx.medra.org/10.48273/LOT0648
https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Dependency as Modality,

Parsing as Permutation

A Neurosymbolic Perspective

on Categorial Grammars

Dependenties als Modale Operatoren,

Ontleding als Permutatie

Een Neurosymbolische Blik

op Categoriale Grammatica’s

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de rector magnificus, prof. dr. Henk Kummeling,
ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen op
vrijdag 9 juni 2023 des ochtends te 10.15 uur

door

Konstantinos Kogkalidis
geboren 19 Juli 1991

te Thessaloniki, Griekenland

Promotor:
Prof. dr. M. J. Moortgat

Copromotor:
Dr. R. Moot

Beoordelingscommissie:
Prof. dr. A. P. J. van den Bosch (voorzitter)
Prof. dr. M. Sadrzadeh
Prof. dr. J. Bos
Prof. dr. S. Clark
Prof. dr. S. Chatzikyriakidis

The research reported here was supported by the Netherlands Organization
for Scientific Research, under the scope of the project “A composition calculus
for vector-based semantic modelling with a localization for Dutch” (project
number 360-89-070).

How fleeting are all human passions compared with the massive continuity of ducks.

Dorothy L. Sayers, Gaudy Night

Contents

Acknowledgements . xi

Abstract . xiii

0 Preface 1

Papers this dissertation is based on . 7

I Introduction 9
1 The Simple Theory of Types . 11

1.1 Intuitionistic Logic . 11
1.1.1 Proof Equivalences . 13

1.2 The Curry-Howard Correspondence 15
1.2.1 Term Equivalences . 18
1.2.2 In Place of a Summary 19

1.3 Intermezzo . 19
2 Going Linear . 22

2.1 Linear Types . 23
2.1.1 Proof & Term Reductions 24

2.2 Proof Nets . 25
3 Lambek Calculi . 30

3.1 Dropping Commutativity . 30
3.1.1 Proof & Term Reductions 32

3.2 Dropping Associativity . 33
3.2.1 Proof & Term Reductions 35

3.3 The Full Landscape . 35
4 Restoring Control . 35

4.1 The Logic of Modalities . 37
4.1.1 Proof & Term Reductions 38
4.1.2 A Digression on Modal Terms 39
4.1.3 Properties . 40

viii

4.2 Structural Reasoning . 43
5 The Linguistic Perspective . 43

5.1 Type-Logical Grammars . 44
5.1.1 The Role of Modalities 47
5.1.2 Intricacies of the Lexicon 50
5.1.3 Subtleties of Proof Search 52
5.1.4 Syntax-Semantics Interface 53

5.2 Abstract Categorial Grammars 58
5.2.1 Basic Definitions . 58
5.2.2 Artificial Languages . 59
5.2.3 Human Languages . 61

5.3 Alternatives . 62
6 Key References & Further Reading 63

Chapter I Bibliography . 65

II Typing Dependency Structure 69
7 Phrase vs. Dependency Structure . 70

7.1 Phrase Structure Grammars . 70
7.2 Dependency Grammars . 72

8 Modalities for Dependency Demarcation 74
8.1 Two Dimensional Predicates . 75
8.2 Modal Dependents . 76

8.2.1 Complements vs. Adjuncts 76
8.2.2 Grammatical Functions 77

8.3 Inference with Dependency-Enhanced Types 78
8.3.1 Initial Lexical Adjustments 78
8.3.2 Dependencies & Structural Reasoning 79

8.4 Interfaces . 86
8.4.1 Dependency Trees . 86
8.4.2 Semantics . 88

9 Key References & Further Reading 89

Chapter II Bibliography . 91

III Proof Extraction 95
10 Preliminaries . 96

10.1 Dutch . 96
10.2 Parsing: Recognition vs. Discovery 99
10.3 Lassy . 100

11 Æthel . 106
11.1 Taming Lassy . 106

11.1.1 Edge Relabeling . 106
11.1.2 Non-Compositional Annotations 107
11.1.3 There Can Be Only One (Head) 112
11.1.4 Phrasal Restructuring 112

ix

11.2 Proving Lassy . 118
11.2.1 Proof Charming . 118
11.2.2 Parameters . 118
11.2.3 Tree Patterns . 119
11.2.4 Post-Processing . 130

11.3 Analysis . 131
11.3.1 Quantitative Obligations 131
11.3.2 Quality Control . 139

12 Key References & Further Reading 144

Chapter III Bibliography . 145

IV Learning to Prove 149
13 The Categorial Parser . 151
14 Supertagging . 152

14.1 A Brief History of Supertagging 153
14.1.1 Origins . 153
14.1.2 CCGbank and the Original Sin 154
14.1.3 Distributed Word Vectors & Neural Networks 156
14.1.4 Autoregressive Modeling 156
14.1.5 Superwhat? . 157

14.2 Constructing Types . 158
14.3 Supertagging as NMT . 160

14.3.1 Buzzwords . 160
14.3.2 Implementation . 162
14.3.3 Experiments & Results 163
14.3.4 Insights & Observations 164

14.4 Geometric Constraints . 165
14.4.1 Geometry-Aware Supertagging 167
14.4.2 Implementation . 170
14.4.3 Experiments & Results 174
14.4.4 Insights & Observations 178

15 Neural Proof Search . 180
15.1 Permuting Types to Alignment 181
15.2 Neural Proof Nets . 182

15.2.1 Implementation(s) . 185
15.2.2 Experiments & Results 187
15.2.3 Insights & Observations 190

15.3 Proof Nets in LP♢,□ . 192
15.3.1 Traversal . 192
15.3.2 Negative Mode . 193
15.3.3 Positive Mode . 194

16 Key References & Further Reading 195

Chapter IV Bibliography . 197

x

V Conclusion 205

A Implementation Notes 209
1 NLP with LP♢,□ . 209

1.1 Structures . 210
1.2 Types . 211
1.3 Terms . 212
1.4 Proofs . 213
1.5 Examples . 215

2 Manipulating Æthel . 216
2.1 User Interface . 217
2.2 Visualization . 217
2.3 Corpus Search . 218

3 Neural Interfacing: Spindλe . 219

Samenvatting in het Nederlands . 221

Curriculum Vitae 225

Acknowledgements

I thank everyone that was directly or indirectly involved in the completion of
this thesis, and everyone who has supported my academic & emotional well-
being over the last five years. Y’all know who you are; I appreciate you and
you are dear to me. Now skip the drama and go read the actual thing.

Abstract

Since their inception, categorial grammars have been front runners in the quest
for a formally elegant, computationally attractive and adequately flexible the-
ory of linguistic form and meaning. As a result of developments in theoreti-
cal computer science, Lambek-style categorial grammars have gradually been
recognized for what they truly are: type-systems proper. Words enact typed
constants, and interact with one another via means of grammatical rules en-
acted by type inferences, composing larger phrases in the process. The end re-
sult is at the same time a parse, a proof and a program, bridging the seemingly
disparate fields of linguistics, formal logics and computer science; a testament
to the holy triptych of language, logic and computation. The transition from
form to meaning is traditionally handled in a Montague-style fashion via a se-
ries of homomorphic translations that gradually remove or simplify nuances
of the syntactic type calculus to move towards a uniform and expressive se-
mantic calculus. Alluring as this might be, it poses pragmatic problems for the
whole programme to come to fruition. For the setup to work on the semantic
level, one has no choice but to start from the hardest part, namely the type-
theoretic treatment of natural language syntax. Phenomena like movement,
word-order variation, discontinuities and the like require careful treatment
that needs to be both general enough to encompass the full range of grammat-
ical utterances, yet strict enough to ward off ungrammatical derivations.

Breaking away from tradition, this thesis takes an operational shortcut
in targeting a “deeper” calculus of grammatical composition, engaging only
minimally with surface syntax. Where previously functional functional syn-
tactic types would be position-conscious, requiring their arguments in pre-
determined positions upon a binary tree, they are now agnostic to both tree
structure and sequential order, alleviating the need for fine-grained syntac-
tic refinements. This simplification comes at the cost of a misalignment be-
tween provability and grammaticality: the laxer semantic calculus permits
more proofs than linguistically allowed. To partially circumvent this under-
specification, the thesis takes an additional step away from the established

xiv

norm, proposing the incorporation of unary type operators extending the an-
alytical axis from plain function-argument structures to function-argument
structures with fixed grammatical roles. The new type calculus produces mixed
unary/n-ary trees, each unary tree denoting a dependency domain, and each
n-ary tree underneath it denoting the phrases which together form that do-
main. Although still underspecified, these peculiar structures directly sub-
sume non-projective labeled dependency trees. More than that, they have their
roots set firmly in type theory, paving the way to their meaningful semantic
interpretation.

On more practical grounds and in order to investigate the formalism’s ex-
pressive adequacy, an extraction algorithm is designed and employed to con-
vert syntactic analyses of Dutch sentences represented as dependency graphs
(stemming from the Lassy small corpus) into proofs of the target logic. The
vast majority of input analyses is successfully handled, giving rise to a large
and versatile proofbank, a collection of sentences paired with tectogrammatic
theorems and their corresponding programs, and an elaborate type lexicon,
providing type assignments to almost one million lexical tokens within a given
linguistic context.

The proofbank and the underlying lexicon both find use as training data in
the design and implementation of a neurosymbolic proof search system able to
efficiently navigate the logic’s expansive theorem space. The system consists
of three major components that alternate role within the processing pipeline.
Component number one is a supertagger responsible for assigning a type to
each input word — the tagger is formulated on the basis of a hyper-efficient
heterogeneous graph convolution kernel that boasts state-of-the-art accuracy
among categorial grammar datasets. Rather than produce type asignments
in the form of conditional probabilities over a predefined type vocabulary,
the supertagger instead constructs types dynamicaly, following their alge-
braic decomposition. As such, it is unconstrained by sparsity and data under-
representation, generalizing well to rare assignments and even producing cor-
rect assignments for types never seen during the course of training. Compo-
nent number two is a neural permutation module that exploits the linearity
constraint of the target logic in order to simplify proof search as optimal trans-
port learning, associating resources (conditional validities) to the processes
that require them (conditions). This reformulation allows for a massively par-
allel and easily optimizable implementation, unobstructed by the structure
manipulation breaks common in conventional parsers. Component number
three is the type system itself, responsible for navigating the produced struc-
tures and thus asserting their well-formedness. Results suggest efficiency su-
perior to, and performance on par with, established baselines across categorial
formalisms, despite the ambiguity inherent to the logic.

CHAPTER 0

Preface

Greetings, reader. Out of coincidence or some weird turn of events, I have
written this dissertation to-be and you have stumbled upon it. Introductions
would normally be in order, but this communication channel is asynchronous
and unidirectional so I will be doing double duty for the both of us.

So let’s start with you. A range of scenarios are plausible as to how you
came to be reading these letters. The safest bet (and easiest way to score some
easy points on precision) is to assume this is some obligation of sorts, in which
case you have my sympathy and gratitude. Also likely, you might be acquain-
tance of mine – academic, social, or both – driven by the curiosity to figure
out what it is I spent 5 (and counting) years in Utrecht for; well, pretty much
this. Less likely, you could just lazilly be scrolling through the opening pages,
contemplating whether I’d be a good fit for some organization you are repre-
senting; if so, you should definitely go for me.1 Least likely, could it even be
that you are actually interested in the subject matter of this thesis? Exciting,
but also slightly alarming; I feel somewhat conscious knowing that you’ll be
putting my words under a critical lens – I’ll do my best not to fail your ex-
pectations. In the wildcard scenario where you do not fall in any of the above
categories, excuse my lack of foresight and know that you are still very wel-
come, and I am happy to have you around. More realistically, if noone ever
reads this (far), let this transmission be forever lost to the void.

But enough with you, what about me? At the time of writing, I am in my
early thirties and call myself Kokos. I had the enormous luck of crossing paths
with my supervisor, Michael, during my first weeks of graduate studies in

1Exceptionally, if this happens to be some big corp reptile den, scram – and shame on you,
future me.

2 Dependency as Modality, Parsing as Permutation

Utrecht. The repercussions of this encounter were (and still are) unforesee-
able. Coming from an applied background with an innate repulsion to any-
thing formal, his course offered me a glimpse of a whole new world. I got to
see that proofs are not irrelevant bureaucracies to avoid, but objects of inter-
est in themselves, hidden in plain sight from the working hacker under the
most common programming patterns. If this naive revelation came as shock,
you can imagine my almost mystical awe when I was shown how proof & type
theories also offer suitable tools and vocabulary for the analysis of human lan-
guages. Despite my prior ignorance, the “holy trinity” between constructive
logics, programming languages and natural languages has been (with its ups
and downs) at the forefronts of theoretical research for well over a century.
This dissertation aims to be the tiniest of contribution to this line of work,
conducted from the angle of a late convert, a theory-conscious hacker.

If all this sounds enticing and you plan on sticking around, at least for a bit
longer, I think it would be beneficial if we set down the terms and conditions
of what is to follow. It is no secret that dissertations are often boring to read,
and it can be easy to lose track of context in seemingly unending walls of text.
Striking a balance between being pedantic and making too many assumptions
on background knowledge is no easy task: the only way to spare you uneces-
sary headaches requires a mutual contract. On my part, I will try to clearly
communicate my intentions, both about the thesis in full, and its parts in iso-
lation: the idea is to make this manuscript as self-contained as possible, but
without nitpicking on details or taking detours unnecessary for the presenta-
tion of the few novelties I have to contribute. Of you, I ask to remain conscious
of what you are reading and aware of my own biases and limitations. The ab-
sence of feedback means that my mental model of you is a purely artificial
construct of my imagination. I will inadvertently skip things that to me seem
self-evident, and rant at length about others that you take for granted. So feel
free to skip ahead when something reads trivial, and do not judge too harshly
when you encounter an explanation you find insufficient.

What is this about The quote below was received almost verbatim as a re-
view. Mean spirited as it may be, it provides an adequate high-level summary
of this thesis’ contents:

[The paper] starts with Lambek Calculus, some how uses depen-
dency labels in some of its semantic types, provides a parsing algo-
rithm for it; there are neural networks and vectors used and some
accuracy results provided, but I am still unsure about the contri-
butions [of the paper] and their relevance.

Unknown reviewer, 2019.

Thanks to this fellow scientist’s earnest reviewing work, all I need to do here
is first align the above summary with the manuscript through a chapter break-
down, and then explicate the thesis’ contributions in a childproof way.

Preface 3

Chapter Breakdown

Chapter 0 greets the reader and provides a chapter summary, while also
setting the tonal precedents for what is to follow. You are currently in it.

Chapter I is an attempt at a painless introduction to simple type theory and
its substructural variants, with an emphasis on their significance for lin-
guistics. We set things off in Section 1 with a crash course on simple type
theory, a formal model of computation and logical deduction. Remov-
ing the ability to erase or duplicate logical propositions, we transition
to linear type theory in Section 2 – a place where the motto is resource
consciousness and truth is not for free. Following along the same path,
in Section 3 we take the extra step of making propositions immovable
and bracket-bound to their surroundings, revealing the landscape of
Lambek calculi (N)L(P). To regain some of the expressivity lost in the
passage, we call modalities to the aid in Section 4 – these allow us to
reinstate the implicit equivalences of before as explicit rules with lim-
ited and controllable applicability. In Section 5, the theoretical wisdoms
amassed through our substructural expedition find use in defining cat-
egorial grammars: type-driven frameworks formalizing the syntax and
semantics of natural languages. We discuss two relevant and related
paradigms: multi-modal type-logical grammars and abstract categorial
grammars; both use constraints imported by types to control grammat-
ical composition, converting parsing to a process of logical deduction.
At long last, we have all the foundational knowledge needed to move
on.

Chapter II offers a non-standard usecase for the structural control modali-
ties of the multimodal Lambek family (N)L(P)♢,□. We begin in Section 7
with a face-off between the two strands of grammar flavors that have
dominated computational linguistics in the past decades – namely con-
stituency and dependency grammars – and see how they compare to
categorial grammars. Unsatisfied by the comparison, we move on to
Section 8, where we appropriate the modalities we resorted to earlier,
repurposing them now as dependency domain demarcators.

Chapter III instantiates a type system based on this new envisaging of modal-
ities, and employs it as a derivational semantics logic1, in alignment
with real-world corpus data. Section 10 sets the stage with a backstory
motivating the design choices made and describing the source corpus.
We proceed to the real thing in Section 11, where we illustrate how
the corpus’ analyses can be recast as proof-theoretic inhabitants in our
framework. We detail the extraction process, the resulting view of the
corpus, and its practical evaluation as a stand-alone resource.

Chapter IV makes for a drastic change of scenery, offering a collection of in-
sights on the neural parsing of substructural grammar logics. We first

1Or abstract syntax logic, depending on which side of the dividing line you stand at.

4 Dependency as Modality, Parsing as Permutation

paint a picture of the archetypical categorial grammar parser in Sec-
tion 13, pinpointing the tension points between abstract theory and ap-
plied practice and exposing the need for a disciplined merger between
the formal and the informal. In Section 14 we trace along the history of
supertagging: the statistical disambiguation process (and the machin-
ery empowering it) through which a system can automatically infer the
most likely type for a lexical item in context (i.e. a word in a sentence).
We start from its (not-so-ancient) origins and go all the way to today,
motivating the abolition of a set-in-stone type vocabulary as a natural
step in its evolutionary progress and providing two convincing imple-
mentations to that end. For the grand finale, in Section 15 we propose
a neural operationalization for the proof nets of linear logic. Invoking
their bureaucracy-free format, we uncover a brand new paradigm for
the statistical parsing of substructural grammar logics in the (N)L(P)
lineage.

Chapter V wraps things up and waves the reader goodbye.

Contributions Contributions produced and presented in this thesis, orga-
nized in bullet points for your convenience and reading pleasure, include:

• a type-driven model of compositional syntax that simultaneously captures
dependency- and function-argument- structures; not a world first, but a
close second by 30 years

• a big, open-source, well-typed dataset of proof-derivations for written Dutch
• the first supertagger to correctly construct novel type assignments, oper-

ating without a fixed lexicon
• the current state of the art supertagger that outperforms accuracy bench-

marks across grammar frameworks, without foregoing the ability to pre-
dict rare and unseen assignments – essentially an assurance that sparse and
elaborated categorial grammars are of practical use, despite prior disdains

• a neural operationalization of linear logic’s proof nets into a massively par-
allel, differentiable and hyper-performant proof search engine – essentially
a reconciliation between the modern neural toolbox and the Lambekian tra-
dition, and a call back to typing discipline for categorial practitioners

How to README The thesis is best read in the order presented; each chap-
ter is (weakly) dependent on its predecessors. That said, you can skip Chap-
ter I if already familiar with type theory and grammar logics – you can always
refer back to it later in case of emergency. Chapter II is self-standing and pro-
vides background that is necessary for Chapter III to make sense – skipping
it is ill-advised. But while Chapter III should prove helpful in appreciating
the empirical results of Chapter IV, it is by no means a prerequisite. If you
are indifferent to the dataset and its construction, and only interested in the
neural stuff from a high-level perspective, you could skip through straight to
Chapter IV (use your power of imagination to fill in any gaps). If you’re not

Preface 5

interested in the neural stuff either, you probably downloaded the wrong doc-
ument and may as well stop reading now. Assuming you’re still with me, I
wish you a pleasant reading.

Publications Chapter II is a novel, extended collage of work taking sec-
ondary role in Kogkalidis et al. [2020a] and Moortgat et al. [2023]. Chapter III
is an extended version of Kogkalidis et al. [2020a]. Chapter IV is based on Ko-
gkalidis et al. [2019, 2020b] and Kogkalidis and Moortgat [2022, preprint] – a
practical summary is compiled in Kogkalidis et al. [2023]. The whole manu-
script is a bigger, better, faster, stronger (or so I’d like to think) version of early
work delivered as part of my master’s thesis [Kogkalidis, 2019].

Papers this dissertation is based on

K. Kogkalidis. Extracting and learning a dependency-enhanced type lex-
icon for Dutch. Master’s thesis, Utrecht University, 2019. URL https:
//studenttheses.uu.nl/handle/20.500.12932/32880.

K. Kogkalidis and M. Moortgat. Geometry-aware supertagging with heteroge-
neous dynamic convolutions, 2022. URL https://arxiv.org/abs/2203.12235.

K. Kogkalidis, M. Moortgat, and T. Deoskar. Constructive type-logical su-
pertagging with self-attention networks. In Proceedings of the 4th Work-
shop on Representation Learning for NLP (RepL4NLP-2019), pages 113–123,
Florence, Italy, Aug. 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-4314. URL https://aclanthology.org/W19-4314.

K. Kogkalidis, M. Moortgat, and R. Moot. ÆTHEL: Automatically extracted
typelogical derivations for Dutch. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 5257–5266, Marseille, France, May
2020a. European Language Resources Association. ISBN 979-10-95546-34-4.
URL https://aclanthology.org/2020.lrec-1.647.

K. Kogkalidis, M. Moortgat, and R. Moot. Neural proof nets. In Proceedings
of the 24th Conference on Computational Natural Language Learning, pages 26–
40, Online, Nov. 2020b. Association for Computational Linguistics. doi: 10.
18653/v1/2020.conll-1.3. URL https://aclanthology.org/2020.conll-1.3.

K. Kogkalidis, M. Moortgat, and R. Moot. SPINDLE: Spinning raw text into
lambda terms with graph attention. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics: System
Demonstrations, Dubrovnik, Croatia, 2023. Association for Computational
Linguistics. To Appear.

M. Moortgat, K. Kogkalidis, and G. Wijnholds. Diamonds are forever: The-
oretical and empirical support for a dependency-enhanced type logic. In

https://studenttheses.uu.nl/handle/20.500.12932/32880
https://studenttheses.uu.nl/handle/20.500.12932/32880
https://arxiv.org/abs/2203.12235
https://aclanthology.org/W19-4314
https://aclanthology.org/2020.lrec-1.647
https://aclanthology.org/2020.conll-1.3

8 Dependency as Modality, Parsing as Permutation

R. Loukanova, P. LeFanu Lumsdaine, and R. Muskens, editors, Logic and Al-
gorithms in Computational Linguistics 2021 (LACompLing2021), volume 1081
of Studies in Computational Intelligence SCI. Springer, March 2023.

CHAPTER I

Introduction

In the beginning was the word,
and the word had a TYPE.

Our story begins with the (over-ambitious, in hindsight) musings of one of
the world’s most famous mathematicians, David Hilbert. Unhappy with the
numerous paradoxes and inconsistencies of mathematics at the end of the 19th
century, Hilbert would postulate the existence and advocate the formulation
of a finite set of axiomatic rules, which, when put together, would give rise
to the most well-behaved system known to [wo]mankind. The system would
enact a universal meta-theory for all mathematics, in the process absolving all
mathematicians of their sins. The idea was of course appealing and gained
traction, not the least due to Hilbert’s influence over the field (and his will
to exercise it). As with all ideas that generate traction, however, it was not
long before a cultural counter-movement would develop. Intuitionism, with
Luitzen Egbertus Jan Brouwer as its forefather, would challenge Hilbert’s pro-
gram by questioning the objective validity of (any) mathematical logic. What
it would claim, instead, is that mathematics is but a subjective process of con-
struction that abides by some rules of inference, which, internally consistent
as they may be, hold no reflection of deeper truth or meaning. In practice,
intuitionists would reject the law of the excluded middle (an essential tool
for Hilbert’s school of formalists) and argue that for a proof to be considered
valid, it has to provide concrete instructions for the construction of the object it
claims to prove. The dispute went on for a couple of decades, its flame carried
on by the respective students of the two rivals. Logic, intrigue, conflict, fame,
no LATEX errors... these truly were the years to be an active mathematician.
Eventually, in a critical moment of clarity and inspiration, and tired by the

10 Dependency as Modality, Parsing as Permutation

ongoing drama, Kurt Gödel, with his famous incompleteness theorem, would
declare Hilbert’s program unattainable, thus putting a violent end to the for-
malist hubris, and paving the way for the true revolution that was to come.
This is in reference, of course, to the biggest discovery of the last century1,
made independently (using wildly different words every time) by various
mathematicians and logicians spanning different timelines. Put plainly, what
is now known as the Curry-Howard correspondence establishes a syntactic
equivalence between deductive systems in intuitionistic brands of logic and
corresponding computational systems, called λ-calculi. Put even more plainly,
it suggests that valid proofs in such logics constitute in fact compilable code
for functional progams, bridging in essence the seemingly disparate fields of
mathematical logic and computer science. The repercussions of this discovery
were enormous, and are more tangible today than ever before; type systems
comprised of higher-order λ-calculi and their logics provide the theoretical
foundations for modern programming languages and proof assistants; a fact
both important and interesting, but which won’t concern us much presently.

In a more niche (but equally beautiful) fragment of the academic world,
and in parallel to the above developments, applied logicians and formally in-
clined linguists have been demonstrating a stunning perserverance in their
self-imposed quest of modeling natural language syntax and semantics, mak-
ing do only with the vocabulary provided by formal logics. This noble endeav-
our traces its origins back to Aristotle, but its modern incarnation is due to Jim
Lambek, who was the first to point out that the grammaticality of a natural
language utterance can be equated to provability in a certain logic (or type in-
habitation, if one is to borrow the terminology of constructive type theories),
if the grammar (a collection of empirical linguistic rules) were to be treated
as a substructural logic (a collection of formal mathematical rules). Funnily
enough, the kind of logics Lambek would employ for his purposes would
be exactly those at the intersection of intuitionistic and linear logic, the latter
only made formally explicit in a breakthrough paper by Jean-Yves Girard al-
most three decades later. By that time, Richard Montague had already come
up with the fantastically novel idea of seeing no distinction between formal
and natural languages, single-handedly birthing and popularizing the field of
formal semantics (which would chiefly invole semantic computations using
λ-calculus notation). With this, he fulfilled Gottlob Frege’s long-prophesized
principle of compositionality, which would once and for all put the Chom-
skian tradition to rest2, ushering linguistics into a new era. With the benefit of
posterity, it would be tempting for us to act smart and exclaim that Lambek
and Montague’s ideas were remarkably aligned. In reality, it took another cou-
ple of decades for someone to notice. The credit is due to Johan van Benthem,
who basically pointed out that Lambek’s calculi make for the perfect syntactic
machinery for Montague’s program, seeing as they admit the Curry-Howard
correspondence, and are therefore able to drive semantic composition virtu-

1In proof theory, at least.
2In some corners of the Earth, this part of the prophecy is yet to transpire.

Introduction 11

ally for free (in fact one could go as far as to say they are the only kind of
machinery that can accomplish such a feat without being riddled with ad hoc
designs). This revelation, combined with the contemporary bloom of substruc-
tural logics, was the spark that ignited a renewed interest in Lambek’s work.
The culmination point for this interest was type-logical grammars (or catego-
rial type logics): families of closely related type theories extending the original
calculi of Lambek with unary operators lent from modal logic, intended to im-
plement a stricter but more linguistically faithful modeling of the composition
of natural language form and meaning.

In this chapter, we will isolate some key concepts from this frantic timeline
and expound a bit on their details. Other than reinvented notation or perhaps
some fresh example, no novel contributions are to be found here; the intention
is merely to establish some common grounds before we get to proceed. If con-
fident in your knowledge of the subject matter, goto Chapter II, but at your
own risk.

1 The Simple Theory of Types

Simple type theory is the computational formalization of intuitionistic logic.
It is in essence an adornment of the rules of intuitionistic logic with the com-
positional manipulations they dictate upon computational terms. Dually, it
provides a decision procedure that allows one to infer the type of a given pro-
gram by inspecting the operations that led up to its construction. It is a staple
of almost folkloric standing for computer scientists across the globe, tracing
its origins to the seminal works of Russel and Church [Russell, 1908; Church,
1940]. The adjective “simple” is not intended as either a diminutive nor a con-
descending remark pertaining to the difficulty of the subject matter, but rather
to distinguish it from the broader class of intuitionistic type theories, which at-
tempt to systematize the notions of quantification (universal and existential),
stratification of propositional hierarchies, and more recently equivalence (nei-
ther of which we will concern ourselves with).

Our presentation will begin with intuitionistic logic. Once that is done, we
will give a brief account of the the Curry-Howard correspondence, which shall
allow us to give a computational account of the logic, that being the simply
typed λ-calculus.

1.1 Intuitionistic Logic

Intuitionistic logic is due to Arend Heyting [Heyting, 1930], who was the first
to formalize Brouwer’s intuitionism. It is a restricted version of classical logic,
where the laws of the excluded middle (tertium non datur) and the elimination
of the double negation no longer hold universally. The first states that one
must choose between a proposition A and its negation ¬A (A ∨ ¬A), whereas
the second states that negation is its own inverse (¬¬A ≡ A). The absence of

12 Dependency as Modality, Parsing as Permutation

these two laws implies that several theorems of classical logic are no longer
derivable in intuitionistic logic, meaning that the logic is weaker in terms of
expressivity. On the bright side, it has the pleasant effect that proofs of intu-
itionistic logic are constructive, i.e. they explicitly demonstrate the formation
of a concrete instance of whatever proposition they claim to be proving.

Focusing on the disjunction-free fragment of the logic, we have a tiny re-
cursive language that allows us to define the various shapes of logical propo-
sitions (or formulas).1 Given some finite set of atomic formulas Prop0, and A, B,
C arbitrary well-formed propositions, the language of propositions in Backus-
Naur form is inductively defined as:

A, B, C := p | A→B | A× B (I.1)

where p ∈ Prop0. Propositions are therefore closed under the two binary logical
connectives→ and ×; we call the first an implication, and the second a conjunc-
tion. A complex proposition is any proposition that is not a member of Prop0,
and its primary (or main) connective is the last logical connective used when
writing it down according to the grammar of (I.1).

Besides propositions, we have structures. Structures are built from propo-
sitions with the aid of a single binary operation, the notation and properties
of which can vary between different presentations of the logic. In our case, we
will indicate valid structures with Greek uppercase letters Γ, ∆, Θ, and define
structures inductively as

Γ, ∆, Θ := ∅ | A | Γ, ∆ (I.2)

In other words, structures are an inductive set closed under the operator ,
which satisfies associativity and is equipped with an identity element ∅ (the
empty structure), i.e. a monoid. A perhaps more down-to-earth way of looking
at a structure is as a list or sequence of propositions.

Given propositions and structures, we can next define judgements, state-
ments of the form Γ ⊢ A. We read such a statement as a suggestion that from
assumptions Γ (i.e. a structure of hypotheses) one can derive the proposition A.
Formulas occurring within Γ are said to occur in antecedent position, whereas
A is in succedent position.

A rule is a two-line statement separated by a horizontal line. Above the
line, we have a (possibly empty) sequence of judgements, which we call the
premises of the rule. Below the line, we have a single judgement, which we call
the rule’s conclusion. The rule can be thought of as a formal guarantee that if
all of its premises are deliverable, then so is the conclusion. Each rule has an
identifying name, written directly to the right of the horizontal line.

Rules may be split in two conceptual categories. Logical rules, on the one
hand, provide instructions for eliminating and introducing logical connec-

1The full logic also includes disjunctive formulas, but we will skip them from this presenta-
tion as they are of little interest to us. For brevity, we will from now on use intuitionistic logic to
refer to its disjunction-free fragment.

Introduction 13

tives. Figure I.1a presents the logical rules of intuitionistic logic. The first rule,
the axiom of identity id, contains no premises and asserts the reflexivity of
the provability operator ⊢. It states that from a proposition A one can infer –
guess what – that very proposition. The remaining logical rules come in pairs,
one per logical connective. The elimination of the implication (or modus po-
nens) states that, given a proof of a proposition A→B from assumptions Γ and
a proof of proposition A from assumptions ∆, one can join the two to derive a
proposition B. Dually, the introduction of the implication (or deduction theorem)
states that from a proof of a proposition B given assumptions Γ, A, one can use
Γ alone to derive an implicational proposition A→B. In a similar manner, the
elimination of the conjunction ×E states that, given a proof of a proposition
A× B from assumptions Γ, and a proof that the triplet ∆, A, B allows us to de-
rive a proposition C, one could well use Γ together with ∆ to derive C directly.
And dually again, the introduction of the conjunction ×I permits us to join
two unrelated proofs, one of A from Γ and one of B from ∆ into a single proof,
that of their product A× B, from Γ joined with ∆.

Structural rules, on the other hand, allow us to manipulate structures (who
would have thought); they are presented in Figure I.1b. Structural rules have
a two-fold role. First, the exchange rule ex explicates an extra property of our
structure binding operator, namely commutativity. One could also make do
with an implicit exchange rule by treating structures as multisets rather than
lists – having it explicit, however, will keep us conscious of its presence and
strengthen our emotional bond to it, in turn making us really notice its absence
when it will no longer be there (it also keeps the presentation tidier). Second,
they give an account of propositions as permanent and reusable facts. The
weakening rule weak formalizes deletion; it states that if we were able to derive
a proposition B from some assumptions Γ, we will also be able to do so if the
assumptions were to contain some arbitrary extra proposition A. Conversely,
the contraction rule contr formalizes copying; it states that if we needed some
assumption structure containing two instances of a proposition A to derive a
proposition B, we could also make do with just one instance of it, discarding
the other without remorse.

A proof, finally, is a heterogeneous variadic tree. At its root, it has a judge-
ment, guaranteed to be derivable (provided we did not mess up somewhere),
called its endsequent. Its subtrees are themselves proofs, fused together by a
rule – the number of premises being the local tree’s arity. At its leaves, it has
identity axioms – the smallest kind of proof.

1.1.1 Proof Equivalences

The same judgement may be provable in more than one ways. The difference
between two proofs of the same judgement can be substantial, when they in-
deed describe distinct derivation procedures, or trivial. Trivial variations come
in two kinds: syntactic equivalences (i.e. sequences of rule applications that
can safely be rearranged) and redundant detours (i.e. sequences of rule appli-

14 Dependency as Modality, Parsing as Permutation

A ⊢ A
id

Γ ⊢ A→B ∆ ⊢ B

Γ, ∆ ⊢ B
→E

Γ, A ⊢ B

Γ ⊢ A→B
→I

Γ ⊢ A× B ∆, A, B ⊢ C
Γ, ∆ ⊢ C

×E
Γ ⊢ A ∆ ⊢ B

Γ, ∆ ⊢ A× B
×I

(a) Logical rules.

Γ, B, A, ∆ ⊢ C

Γ, A, B, ∆ ⊢ C
ex

Γ ⊢ B

Γ, A ⊢ B
weak

Γ, A, A ⊢ B

Γ, A ⊢ B
contr

(b) Structural rules.

Figure I.1: Intuitionistic Logic IL→,×.

cations that can altogether be removed).
The first kind is not particularly noteworthy. In essence, we say that two

proofs are syntactically equivalent if they differ only in the positioning of
structural rule applications. This notion can be formally captured by establish-
ing an equivalence relation between proofs on the basis of commuting conver-
sions.

The second kind is more interesting and slightly more involved. A proof
pattern in which a logical connective is introduced, only to be immediately
eliminated, is called a detour (or β redex). Detours can be locally resolved via
proof rewrites – the fix-point of performing all applicable resolutions is called
proof normalization and yields a canonical proof form. The strong normalisation
property guarantees that a canonical form exists for any proof in the logic, and
in fact the choice of available rewrites to apply at each step is irrelevant, as all
paths have the same end point [de Groote, 1999]. Figure I.2 presents rewrite
instructions for the two detour patterns we may encounter (one per logical
connective). Read bottom-up1, the first one suggests that if one were to hy-
pothesize a proposition A, use it within an (arbitrarily deep) proof s together
with extra assumptions Γ to derive a proposition B, before finally redacting the
hypothesis and composing with a proof t that derives A from assumptions ∆,
it would have been smarter (and more concise!) to just plug in t directly when
previously hypothesizing A, since then no redaction or composition would

1In the small-to-big rather than literal sense! If confused: start from the proof leaves and go
down.

Introduction 15

. . . A ⊢ A
id

.... s

Γ, A · · · ⊢ B....
Γ, A ⊢ B

Γ ⊢ A→B
→I

.... t

∆ ⊢ A

Γ, ∆ ⊢ B
→E

=⇒

. . .

.... t

∆ ⊢ A.... s

Γ, ∆ · · · ⊢ B....
Γ, ∆ ⊢ B

.... s

Γ ⊢ A

.... t

∆ ⊢ B

Γ, ∆ ⊢ A× B
×I

A ⊢ A
id

. . . B ⊢ B
id

.... u

Θ, A, B · · · ⊢ C....
Θ, A, B ⊢ C

Γ, ∆, Θ ⊢ C
×E

=⇒

.... s

Γ ⊢ A . . .

.... t

∆ ⊢ B.... u

Γ, ∆, Θ · · · ⊢ C....
Γ, ∆, Θ ⊢ C

Figure I.2: Intuitionistic β redexes.

have been necessary. In a similar vein, the second suggests that if one were to
derive and merge proofs s and t (of propositions A and B, respectively), only
to eliminate their product against hypothetical instances of A and B that were
used in proof u to derive C (together with assumptions Θ), the proof can be re-
duced by just plugging s and t in place of the axiom leaves of u. Note the use
of horizontal dots at the axiom leaves, denoting simultaneous substitutions
of all occurrences of redundant hypotheses, and the use of unnamed vertical
dots, denoting (invertible) sequences of contr and/or ex rules.

1.2 The Curry-Howard Correspondence

The Curry-Howard correspondence asserts an equivalence between the above
presentation of the logic in natural deduction, and a system of computation
known as the λ-calculus. It was first formulated by Haskell Curry in the 30s
before being independently rediscovered by William Alvin Howard and Nico-
laas Govert de Bruijn in the 60s [Curry, 1934; de Bruijn, 1983; Howard, 1980].
The entry point for such an approach is to interpret propositions as types of a
minimal functional programming language (a perhaps more aptly named al-
ternative to the Curry-Howard correspondence is the propositions-as-types in-
terpretation). In that sense, the set of atomic formulas Prop0 becomes the pro-
gramming language’s basic set of primitive or base types (think of them as built-
ins). Implicational formulas A→B are read as function types, and conjunction
formulas are read as tuple (or cartesian product) types. From now we will use
formulas, propositions and types interchangeably. Following along the corre-

16 Dependency as Modality, Parsing as Permutation

xi : A ⊢ xi : A
id

Γ ⊢ s : A→B ∆ ⊢ t : B

Γ, ∆ ⊢ s t : B
→E

Γ, xi : A ⊢ s : B

Γ ⊢ λxi.s : A→B
→I

Γ ⊢ s : A× B Γ, xi : A, xj : B ⊢ t : C

Γ, ∆ ⊢ case s of (xi, xj) in t : C
×E

Γ ⊢ s : A ∆ ⊢ t : B

Γ, ∆ ⊢ (s, t) : A× B
×I

Γ, B, A, ∆ ⊢ s : C

Γ, A, B, ∆ ⊢ s : C
ex

Γ ⊢ s : B

Γ, xi : A ⊢ s : B
weak

Γ, xi : A, xj : A ⊢ s : B

Γ, xk : A ⊢ s[xi 7→xk ,xj 7→xk]
: B

contr

Figure I.3: Simple type theory.

spondence allows us to selectively speak about individual, named instances of
propositions – we call these terms. The simplest kind of term is a variable, corre-
sponding to a hypothesis in the proof tree. Each logical rule is identified with
a programming pattern: the axiom rule is variable instantiation, introduction
rules are constructors of complex types, and elimination rules are their destruc-
tors. The question of whether a logical proposition is provable translates to
the question of whether the corresponding type is inhabited; i.e. whether an
object of such a type can be created – we will refer to the latter as a well-formed
term.

Rather than present a grammar of terms and later ground it in the logic, we
will instead simply revisit the rules we established just above, now adorning
each with a term rewrite instruction – the result is a tiny yet still elegant and
expressive type theory, presented in Figure I.3. Given an infinite but enumer-
able set Vars consisting of (unique names for) indexed variables with elements
{xi, xj, xk, xl , . . .}, and denoting arbitrary but well-formed terms with s, t, u, we
will use s : A (or sA) to indicate that term s is of type A. Assumptions Γ, ∆ will
now denote a typing environment:

xi : A, xj : A′, xk : A′′ . . . (I.3)

i.e. rather than a sequence of formulas, we have a sequence of distinct vari-
ables, each of a specific type, and a judgement Γ ⊢ s : B will now denote the
derivation of a term s of type B out of such an environment.

Inspecting Figure I.3, things for the most part look good. The implication
elimination rule →E provides us with a composite term s t that denotes the

Introduction 17

function application of functor s on argument t. Function application is left-
associative: s t u is the bracket-economic presentation of (s t) u – we have no
choice but to use brackets if want to instead denote s (t u). The dual rule,→I,
allows us to create (so-called anonymous) functions by deriving a result s de-
pendent on some hypothesized argument xi which is then abstracted over as
λxi.s. Any occurrence of xi within s is then bound by the abstraction; variables
that do not have a binding abstraction are called free. The conjunction intro-
duction ×I allows us to create tuple objects (s, t) through their parts s and
t. Its dual, ×E, gives us the option to identify the two coordinates of a tuple
s with variables xi and xj, when the latter are hypothesized assumptions for
deriving some program t. If our assumptions are not in order, blocking the
applicability of some rule, we can put them back where they belong with ex.
With contr we can pretend to be using two different instances xi and xj of the
same type before identifying the two as a single object xk in term s; note here
the meta-notation for variable substitution, s[xi 7→t], which reads as “replace any
occurrence of variable xi with term t. And finally, we can introduce throw-
away variables into our typing environment with weak (arguably useful for
creating things like constant functions).

There’s just a few catches to beware of. The first has to do with tracing vari-
ables in a proof; the concatenation of structures Γ, ∆ is only valid if Γ and ∆
contain no variables of the same name; if that were to be the case, we would be
dealing with variable shadowing, a situation where the same name could am-
biguously refer to two distinct objects (a horrible thing). The second has to do
with the ex rule. The careful reader might notice that the rule leaves no imprint
on the term level, meaning we cannot distinguish between a program where
variables were a priori provided in the correct order, and one where they were
shuffled into position later on. This is justifiable if one is to treat the rule as a
syntactic bureaucracy that has no real semantic effect, i.e. if we consider the
two proofs as equivalent, following along the commuting conversions men-
tioned earlier (supporting the idea that in this type theory, asssumptions are
multisets rather than sequences). A slightly more perverse problem arises out
of the product elimination rule×E. The rule posits that two assumptions xi : A
and xj : B can be substituted by a single (derived) term of their product type
s : A× B. Choosing different depths within the proof tree upon which to per-
form this substitution will yield distinct terms (because indeed they represent
distinct sequences of computation); whether there’s any merit in distinguish-
ing between the two is, however, debatable. Finally, whereas other rules can
be read as syntactic operations on terms, (this presentation of) the contr rule
contains meta-notation that is not part of the term syntax itself. That is to say,
s[xi 7→t] is not a valid term – even if the result of the operation it denotes is. Gen-
erally speaking, substitution of objects for others of the same type is (modulo
variable shadowing) an admissible property of the type system. Mixing syntax
and meta-syntax in the same system is a dirty but useful trick people sporad-
ically employ; this surely invites some trouble, but conscious use of it can be
worth it, since it significantly simplifies presentation.

18 Dependency as Modality, Parsing as Permutation

1.2.1 Term Equivalences

There exist three kinds of equivalence relations between terms, each given an
identifying Greek letter.1

α conversion is a semantically null rewrite obtained by renaming variables
according to the substitution meta-notation [xi 7→ xj] described above. Despite
seeming innocuous at a first glance, α conversion is an operation that needs
to be applied with extreme caution so as to avoid variable capture, i.e. sub-
stituting a variable’s name with one that is already in use. Two terms are α
equivalent if we can rewrite one into the other using just α conversions, e.g.

λxi.xA
i

α≡ λxj.xA
j (I.4)

Standardizing variable naming, e.g. according to the distance between vari-
ables and their respective binders, alleviates the effort required to check for α
equivalence by casting it to simple syntactic equality (string matching).

β reduction The term rewrites we have so far inspected were either provided
by specific rules, or were notational overhead due to the denominational am-
biguity of variables. Aside from the above, our type system provides two min-
imal computation steps that tell us how to reduce expressions that involve the
deconstruction of a just-constructed type:

(λxi.s) t
β
⇝ s[xi 7→t] (I.5)

case (s, t) of (xi, xj) in u
β
⇝ u[xi 7→s,xj 7→t] (I.6)

A term on which no β reductions can be applied is said to be in β-normal
form. The Church-Rosser theorem asserts first that one such form exists for all
well-formed terms, and second, that this form is inevitable and inescapable
– any reduction strategy followed to the end will bring us to it [Barendregt
et al., 1984]. Two terms are β equivalent to one another if they both reduce to
the same β-normal form.

If you are at this point getting a feeling of deja vu, rest assured this is not on
you; we have indeed gone through this before, last time around with proofs
rather than terms. If one were to replicate the above term reductions with
their corresponding proofs, they would end up exactly with the proof reduc-
tion patterns of Figure I.2. I will spare you the theatrics of faking surprise at
this fact, but if this not something you were exposed to previously, take a mo-
ment here to marvel at the realization that proof normalization is in reality

1The denotational significance of these letters I have yet to understand – legend has it that
the spirit of Curry will gently whisper it in your ear after having successfully written your 100th
compiler from scratch.

Introduction 19

Logic Computer Science

Propositional Constant Base Type
Logical Connectives Type Constructors

Implication Function Type
Conjunction Product Type

Axiom Variable
Introduction Rule Constructor Pattern
Elimination Rule Destructor Pattern

Proof Normalization Computation
Provability Type Inhabitation

Figure I.4: The Curry-Howard correspondence in tabular form.

“just” computation. This discovery lies at the essence of the Curry-Howard
correspondence.

η conversion In contrast to β conversion, which tells us how to simplify
an introduce-then-eliminate pattern, η conversion tells us how to modify an
eliminate-then-introduce pattern. An η long (or normal) form of a term is one
in which the arguments to type operators are made explicit (i.e. all introduc-
tions of a connective are preceded by its elimination), whereas an η contracted
(or pointfree) form is one where arguments are kept hidden [Prawitz, 1965].
We refer to the simplification of an expanded form as η reduction, which is the
computational dual of β reduction; the reverse process is an η expansion. Both
directions are facets of η conversion – the equivalence relation enacted by this
conversion is called η equivalence.

λxi.s xi
η
≡ s (I.7)

(case s of (xi, xj) in xi, case s of (xk, xl) in xl)
η
≡ s (I.8)

1.2.2 In Place of a Summary

Figure I.4 summarizes the subsection.

1.3 Intermezzo

We now know how to prove things (or compute with types). Before moving
along with this chapter’s agenda, we will take a brief pause to provide some
auxiliary definitions and notations that should prove relevant later on. This is
also a chance to do a bit of warming up with some baby examples before some
real world proofs start coming our way.

20 Dependency as Modality, Parsing as Permutation

Complex formula / Constituent polarity
of polarity A B

A× B
+ + +
− − −

A→B
+ − +
− + −

Table I.1: Polarity induction.

xi : A→B ⊢ xi : A→B
id

xj : A ⊢ xj : A
id

xi : A→B, xj : A ⊢ xi xj : B
→E

xj : A ⊢ λxi.xi xj : (A→B)→B
→I

Figure I.5: Type raising.

Formula Polarity Each unique occurrence of (part of) a formula within a
judgement can be assigned a polarity value, positive or negative. All antecedent
formulas are positive, and the lone succedent formula right is negative. Com-
plex formulas propagate polarities to their constituents depending on their
own polarity and primary connective – this way, all subformulas down to
the atomic level are polarized. Conjunctive formulas propagate their polar-
ity unchanged to both their coordinates, whereas implicative formulas flip
their polarity for the constituent left of the arrow; see Table I.1. Intuitively, we
can think of negative formulas as being in argument position (conditions for
the proof to proceed), and positive formulas as being in result position (con-
ditionally provable statements). The two judgements of the next paragraph
have their subformulas annotated with a superscript denoting their polarity,
for illustrative purposes.

Type Raising Type raising A+ ⊢ (A−→B+)→B− is a derivable theorem of
intuitionistic logic presented in Figure I.5. It states that for A, B arbitrary propo-
sitions, from A one can derive its raised form (A→B)→B. The converse, i.e.
type lowering, does not generally hold: (A+→B−)→B+ ⊬ A−.

Function Order The implication-only fragment of the logic includes→ as its
sole logical connective. The resulting type theory is one that deals only with
functions; for its types, we can define their order O as follows:

O(p ∈ Prop0) := 0

O(A→B) := max(O(A) + 1,O(B))
(I.9)

Introduction 21

Types whose order is above 1 are called higher-order types; they denote func-
tions that accept functions as their arguments. For instance, for p and s atomic
propositions of order 0, their respective identity functions p→p and s→s are
of order 1, and the raised form of p into s, i.e. (p→s)→s, is of order 2.

Notational Shorthands The verbosity of term-decorated proofs can get cum-
bersome in the long run, and does not play well with the unforgiving horizon-
tal margins enforced by the template imposed on writer and reader alike. It is
probably inevitable that at some point proofs will need a smaller font size to
fit on a page (or, worse yet, some neck-breaking rotations of the orientation
plane), but in a futile attempt to postpone such emergency measures, we will
occasionally make use of a shorthand notation for natural deduction proofs
that avoids repetition, at the cost of maybe requiring some extra time to visu-
ally parse. In this notation, axioms will be rewritten as follows:

xi : A ⊢ xi : A
id =:

xi : A
id

And assumptions will appear without type assignments (if uncertain of what
some variable’s type is, just trace it back to its axiom). We will always provide
type declarations for derived terms (right of the turnstile). The examples of
the next paragraph (and many of the ones to follow) will use this alternative
notation.

Currying A product type occurring in the argument position of an implica-
tion is interderivable with a longer implication where its coordinates are se-
quentialized: (A× B)→C ⊣⊢ A→B→C. The forward direction is called curry-
ing, and the backward uncurrying; you can find a proof for each in Figure I.6.
Having proven that once, we can reuse that proof for deriving implicational
equivalents from conjunctions (including nested ones, provided they occur as
arguments to an implication). Combined with type raising, this trick is inter-
esting, as it permits us to indirectly argue about product types as higher-order
implications, even in presentations of the theory that do not include an explicit
product (and thus avoid the issues related to its elimination), e.g. we have:

A× B ⊢ ((A× B)→C)→C ⊣⊢ (A→B→C)→C (I.10)

Keep a mental note.

Proof Search Attempting to derive a judgement of the form Γ ⊢ A amounts
to searching for a suitable proof of that statement, a process called proof search.
We distinguish two directions of proof search: the backward chaining (or top-
down) approach starts from the goal judgement and iteratively expands it into
judgements with smaller assumptions – one judgement per premise generated
by the rule of inference applied – with the intention being the eventual decon-
struction of all branches into axioms of identity. The other direction is called

22 Dependency as Modality, Parsing as Permutation

xi : (A× B)→C
id

xj : A
id

xk : B
id

xj, xk ⊢ (xj, xk) : A× B
×I

xi, xj, xk ⊢ xi (xj, xk) : C
→E

xi ⊢ λxjxk.xi (xj, xk) : A→B→C
→I(x2)

(a) Currying

xi : A× B
id

xj : A→B→C
id

xk : A
id

xj, xk ⊢ xj xk : B→C
→E

xl : B
id

xj, xk, xl ⊢ xj xk x3 : C
→E

xi, xj ⊢ case xi of (xj, xk) in xj xk xl : C
×E

xj, xi ⊢ case xi of (xj, xk) in xj xk xl : C
ex

xj ⊢ λxi.case xi of (xj, xk) in xj xk xl : (A× B)→C
→I

(b) Uncurrying

Figure I.6: Interderivability of product and arrow.

forward chaining (or bottom-up), and starts from a collection of hypothesized
propositions (axioms) that are glued together to form progressively more com-
plex structures, until the goal judgement is reached. Without digressing fur-
ther, it is important to realize that both directions are confronted with the same
issue, albeit from different angles, namely hypothetical reasoning. Forward
chaining requires a perfect guess of any and all propositions reqired in de-
riving A from Γ, even those that will be redacted and thus never occur in Γ.
Dually, backward chaining might require introduction of substructures and
subformulas that are nowhere to be found in either the antecedents or the
succedent of the current judgement due to the modus ponens-like behavior of
implication elimination. Long story short, proof search is hard.

2 Going Linear

We are now ready to start charting grounds in substructural territories: we will
gradually impoverish our logic by removing structural rules one by one, and
see where that gets us. The weakest links are the contr and weak rules. These
two rules are a cultural and ideological remnant of a long-gone age infested
by delusions of prosperity and abundance. In their presence, propositions are
proof objects that can be freely replicated and discarded. Removing them (or
controlling their applicability via other means) directs us towards a more eco-

Introduction 23

conscious regime by turning propositions into finite resources, the production
and/or consumption of which is not to be taken for granted. Removing the
contr rule yields Affine Logic, a logic in which resources can be used no more
than once. Removing the weak rule yields Relevant Logic, a logic in which re-
sources can be used no less than once. Removing both yields Linear Logic, a
logic in which resources must be used exactly once. The intuitionistic formu-
lations of the above give rise to corresponding type theories [Pierce, 2004].
For the purposes of this thesis, we will focus our presentation on linear type
theory.

2.1 Linear Types

Linear logic is due to Jean-Yves Girard [Girard, 1987], and its computational
interpretation due to Samson Ambramsky [Abramsky, 1993]. The full logic
includes two disjunctive connectives as well as a modality that allows one
to incorporate non-linear propositions into the presentation, but we will hap-
pily forget about those. Note that with these missing connectives included,
the logic is not impoverished but rather enhanced – full linear logic in fact
subsumes intuitionistic logic; we have no use of this much expressivity here
though. Insights from the previous section carry over to this one; we will no
longer separate the presentation between the logic and the type theory, but
instead do both in one go.

For the fragment of interest to us, the type grammar becomes:

A, B, C := p | A⊸B | A⊗ B | A&B (I.11)

There is not really much we have to do to manipulate these new types, other
than a slight cognitive rewiring. We will note first that the meaning of the im-
plication arrow changes from material implication to transformation process;
i.e. where we previously had A→B to denote that B logically follows from A,
we will now have A⊸B to denote an irreversible process that transforms a
single A into a single B, consuming the former in the process (we can think
of this as a perfect chemical reaction). The new, weird-looking arrow of linear
implication is read as lolli(pop) due to its suggestive appearance.1 Conjunc-
tion × is now separated into two distinct operators, the multiplicative ⊗ and
the additive &. The first denotes a linear tuple, and A⊗ B is read as both A and
B. A linear tuple offers no possibility of projection: we will need to use both
coordinates going forward. The second denotes a choice, and A&B is read as A
with B, or choose one of A or B. This choice is external, as the freedom of applying
it lies with the operator rather than the proof, and is manifested by the pres-
ence of two eliminators for our new connective: a left projection &E1 and a
right projection &E2; choosing one means we lose the possibility of obtaining
the other. Unique to the &I rule is the fact that two proof branches used to

1If trying to typeset it yourself, DO NOT duckduckgo for “lolli in latex”. It can be found as
\multimap. You are welcome.

24 Dependency as Modality, Parsing as Permutation

xi : A ⊢ xi : A
id

Γ ⊢ s : A⊸B ∆ ⊢ t : A

Γ, ∆ ⊢ s t : B
⊸E

Γ, xi : A ⊢ s : B

Γ ⊢ λxi.s : A⊸B
⊸I

Γ ⊢ s : A⊗ B ∆, xi : A, xj : B ⊢ t : C

Γ, ∆ ⊢ case s of (xi, xj) in t : C
⊗E

Γ ⊢ s : A ∆ ⊢ t : B

Γ, ∆ ⊢ (s, t) : A⊗ B
⊗I

Γ ⊢ s : A&B

Γ ⊢ fst(s) : A
&E1

Γ ⊢ s : A&B

Γ ⊢ snd(s) : B
&E2

Γ ⊢ s : A Γ ⊢ t : B

Γ ⊢ ⟨s, t⟩ : A&B
&I

(a) Logical rules.

Γ, xj : B, xi : A, ∆ ⊢ s : C

Γ, xi : A, xj : B, ∆ ⊢ s : C
ex

(b) Structural rule.

Figure I.7: Linear Logic ILL⊸,⊗,& and its type theory.

derive each coordinate of the A&B conclusion share the same assumptions Γ.
The subset of linear logic concerning the connectives discussed is presented
in Figure I.7, together with its term rewrites (assumptions, judgements, rules
and proofs look just like before). For the sake of homogeneity and explicitness,
ex still makes an appearance as the sole structural rule.

Notationally, the absence of non-linear intuitionistic terms allows us to
freely reuse our prior term notation without fear of ambiguity. We have three
new term patterns: ⟨s, t⟩ to denote the choice between proof terms s and t
(contrast to the linear tuple (s, t)), and fst() and snd() to denote the first and
second projections. Similarly for the implication introduction rule⊸I, no re-
dundant variables means that xi must now appear free once in the abstraction
body s – in other words, we have no way of syntactically instantiating constant
functions.

2.1.1 Proof & Term Reductions

The notions of proof and term equivalence discussed in the previous section
hold also for linear logic. Proof normalization looks almost identical to before
in the case of→ and × (substituting of course for⊸ and ⊗). The key differ-
ence lies in the absence of horizontal dots and unnamed vertical dots (since
the contr rule is no more, meaning that there can only be a single occurrence
of each axiom replaced with a proof). The extra connective & introduces its
own two redexes (one per eliminator); the reduction of the first projection is

Introduction 25

A ⊢ A
id

.... s
Γ, A ⊢ B

Γ ⊢ A⊸B
⊸I

.... t

∆ ⊢ A

Γ, ∆ ⊢ B
⊸E

=⇒

.... t

∆ ⊢ A.... s

Γ, ∆ ⊢ B

.... s

Γ ⊢ A

.... t

∆ ⊢ B

Γ, ∆ ⊢ A⊗ B
⊗I

A ⊢ A
id

B ⊢ B
id

.... u
Θ, A, B ⊢ C

Γ, ∆, Θ ⊢ C
⊗E

=⇒

.... t

Γ ⊢ A

.... u

∆ ⊢ B.... s
Γ, ∆, Θ ⊢ C

.... s
Γ ⊢ A

.... t
Γ ⊢ B

Γ ⊢ A&B
&I

Γ ⊢ A
&E1 =⇒

.... s
Γ ⊢ A

Figure I.8: Linear β redexes.

shown in Figure I.8. Its reading is straightforward: if one were to use Γ to inde-
pendently derive A and B along two parallel proofs, proceed by constructing
a choice between the two, and then also make that choice (favoring either),
there was never any need for the other in the first place. The equivalent term
reduction steps this time around are:

(λxi.s) t
β
⇝ s[xi 7→t] (I.12)

case (s, t) of (xi, xj) in u
β
⇝ u[s 7→xi ,t 7→xj]

(I.13)

fst(⟨s, t⟩)
β
⇝ s (I.14)

snd(⟨s, t⟩)
β
⇝ t (I.15)

2.2 Proof Nets

We have basked in the beauty of the natural deduction presentation adopted
so far, and seen how it gives rise to a straightforward computational interpre-
tation. We have also seen how it is at times overly bureaucratic in its explica-
tion of structural rules that are null from a computational perspective. To our
luck, an additional representation makes itself available as soon as we step
into linear grounds, namely proof nets, also due to Girard [Girard, 1987]. Proof

26 Dependency as Modality, Parsing as Permutation

xj : B⊸C
id

xi : A⊸B
id

xk : A
id

xi, xk ⊢ xi xk : B
⊸E

xj, xi, xk ⊢ xk (xj xi) : A⊸C
⊸E

xj, xi ⊢ λxk.xj (xi xk) : A⊸C
⊸I

xi, xj ⊢ λxk.xj (xi xk) : A⊸C
ex

Figure I.9: Linear function composition.

nets are best suited for the multiplicative fragment of the logic (they are ame-
nable to extensions with additive connectives, but things get uglier there). In
our case, we have foregone the disjunctive connectives, and we have already
suggested that the multiplicative conjunction ⊗ is (to an extent) interchange-
able with the implication arrow⊸ (we actually did this for intuitionistic con-
nectives, but there is no need to repeat ourselves – the story looks identical
with their linear variants). This gives us the much needed excuse to justify
limiting our presenting of proof nets to the implication-only fragment of lin-
ear logic, ILL⊸, where things are easy and intuitive.

In natural deduction, our proofs are built sequentially. We start with some
hypothesized variables and combine them via rules to derive more complex
terms, which then serve as premises for a next iteration of rule applications.
As long as we are careful not to get stuck in some detour loop hell, we rinse
and repeat, and eventually, after a finite number of steps, we end up with our
conclusion, at which point we can call it a day. Proof nets offer an appealing al-
ternative: they are parallel, in the sense that they allow multiple conclusions to
be derived simultaneously. They also have no notion of temporal precedence:
everything happens in a single instant, meaning that positive subformulas are
good to use without having to wait for their conditions to be met.

To see this in practice, a simple but concrete example will prove helpful.
We will consider the natural deduction proof of linear function composition
of Figure I.9 and translate it into its proof net equivalent of Figure I.10.

The first thing we need to do is write formulas as their decomposition trees; it
sounds fancy, but in reality this is just recompiling formulas according to their
underlying grammar, but now in tree form: atomic formulas become leaves,
and logical connectives become branch nodes. To make this a tiny bit more
interesting, we will decorate atomic subformulas with a superscript denoting
their polarity, according to the schema of Subsection 1.3. For formula trees
with positive roots (i.e. trees occuring left of the turnstile), we will put a la-
bel beneath them to identify them with the variable that provides them. We
will also distinguish tree edges originating from a negative implication and
pointing to a positive tree by marking them with dashed lines – these denote
positively rooted trees that are either nested within a higher-order positive im-

Introduction 27

A− B+

⊸
xi

B− C+

⊸
xj

A+ C−

⊸

xk

(a) Proof frame.

A− B+

⊸
xi

B− C+

⊸
xj

A+ C−

⊸

xk

(b) Proof structure.

Figure I.10: Proof net construction for the proof of Figure I.9.

plication, or in the argument position of an implication right of the turnstile.1

Such positive formulas play the role of hypotheses that have been abstracted
over, therefore we need to also give these a name; we can put it right next to
the dashed line. An arrangement of the decomposition trees of all formulas as
they occur within a judgement is called a proof frame; the one for our running
example can be seen in Figure I.10a.

A proof frame must satisfy an invariance property before the eligibility of
the judgement it prescribes can even be considered. Namely, it must contain
an equal number of positive and negative occurrences of each unique atomic
formula that appears within it. This perfectly fits the linear logic paradigm: ev-
erything produced has to be consumed, and vice versa. In our case, we have
three unique formulas, A, B and C, each one of which has a single positive and
a single negative occurrence: check. The next thing to do in building a proof
net is to establish a bijection between atomic formulas of opposite polarity,
and draw it as an extra set of edges, pointing negative atoms to their positive
matches: we call those axiom links. Axiom links essentially specify the elimi-
nation of function types: they identify function arguments with their concrete
inputs in a geometric fashion. We do not need to put much thought for our
running example: since all atoms have a single occurrence of each polarity,
there is just one possible bijection to consider, presented in Figure I.10b. A
proof frame with axiom links on top is called a proof structure, and this repre-
sentation provides all of the information contained within a proof.

Alas, the relation from proof structures to proof nets is not one-to-one:

1An alternative notation employs two distinct symbols for the positive and negative versions
of an implication. In the literature, these can be encountered as tensor (⊗) and par (

&

) links.

28 Dependency as Modality, Parsing as Permutation

there exist many more proof structures than proofs. A proof structure is a proof
net if and only if it satisfies a correctness criterion. There have been various
formulations of this criterion, each with a different time complexity, ranging
from exponential to linear [Girard, 1987; Danos and Regnier, 1989; Murawski
and Ong, 2000; Guerrini, 2011]. We will adopt an (informally rephrased) ver-
sion of the acyclicity and connectedness criterion of Danos and Regnier [1989].
We are going to treat a proof structure as a heterogeneous graph, consisting
of two node types, logical connectives and atomic formulas, and three edge
types: tree-structure edges, further subcategorized according to their polarity,
and axiom links. We will then attempt a traversal of that graph using an algo-
rithm defined on the basis of the above parameterization, that further utilizes
the ancillary tree labels we have assigned earlier. At each step of the traversal,
the algorithm will write down a (partial) term or term instruction [De Groote
and Retoré, 1996; Lamarche, 2008]. We will expect the traversal to be termi-
nating (i.e. to not get stuck in a loop) and complete without repeats (i.e. to
have passed through all nodes and edges exactly once), and the term it has
transcribed at its last step to be well-formed, at which point we will happily
claim the proof structure to indeed be a proof net.

Traversing ILL⊸ Nets Now, let’s get our crayons out and sketch the outline
of the traversal algorithm. We will have two traversal modes: negative (or up-
ward) mode and positive (or downward) mode. In negative mode, we move
upwards along negative nodes. When encountering a negative implication,
we will create a λ abstraction over the variable specified by its dashed edge.
When encountering a negative leaf, we will traverse across the axiom link to
its positive counterpart and switch to positive mode. In positive mode, we
move downwards along positive nodes. When we encounter a positive impli-
cation, we will add its negative (upward) branch to our mental stack and pro-
ceed downwards. Upon running out of positive nodes to visit, we will write
down the variable label assigned to the positive tree’s root, and then perform
a negative traversal of each of the negative branches that live in our stack (i.e.
we have encountered going down), in reverse order. We will start from the
root of the formula tree occurring right of the turnstile (we know which one
that is by the fact it has no variable label underneath it) in negative mode.

In our case, this is a negative implication, the dashed line of which reads
xk, so we start by writing down λxk.(. . .). We move on to C−, which is a leaf, so
we cross over to C+ and switch to positive mode. Going down, we encounter
an implication as the positive root, and write down the positive tree’s name,
getting λxk.xj(. . .). We proceed in negatative mode to B−, cross over to B+

and repeat the above, getting λxk.xj (xi . . .) before going into negative mode
again. The final axiom link points us to A+, which is its own root, named xk.
At this point, our traversal has transcribed the term λxk.xj (xi xk) and we have
ran out of paths to explore. By now, all our nodes and edges have been visited,
and our final term is both well-formed and identical to the one prescribed by
the natural deduction proof of Figure I.9: a joyful outcome! If we consider

Introduction 29

B−i ⊸C+
j ⊢ B+i ⊸C−j

id
A−k ⊸B+l ⊢ A+

k ⊸B−l
id

A+
m ⊢ A−m

id

A−k ⊸B+l , A+
m ⊢ B−l

⊸E(1)

B−i ⊸C+
j , A−k ⊸B+l , A+

m ⊢ C−j
⊸E(2)

B−i ⊸C+
j , A+

k ⊸B+l ⊢ A+
m⊸C−j

⊸I

A−k ⊸B+l , B−i ⊸C+
j ⊢ A+

m⊸C−j
ex

Figure I.11: Extracting axiom links from the proof of Figure I.9.

ourselves bound to the permutation of assumptions dictated by the variable
indices, the only thing we would need to do going backwards is guess the
presence (and position) of the ex rule.

Axiom Links and Where to Find Them It would be understandable if at this
point we allowed ourselves a feeling of complacency; navigating a proof net
is no small feat, after all. But upon careful inspection, you might realize that
you have been tricked. There never was any room for error in transitioning
from the proof frame of Figure I.10a to the proof structure of Figure I.10b. A
rare and lucky coindidence, or perhaps the result of carefully planned conceal-
ment? Whichever the case, we cannot reasonably anticipate there to always be
a single possible set of axiom links, so we need a decision procedure that tells
us how to actually extract them from a less forgiving proof.

Let’s revisit the natural deduction proof of Figure I.9. This time around,
we will explicate polarity information, and put an identifying index to each
atomic formula occurrence at its axiom leaves; the turnstile mirrors indices
faithfully, but inverts atomic polarities. Going bottom up through Figure I.11,
every encounter of an implication elimination allows us (i) to identify the set
of indices coming from the functor’s negative part with the set of indices pro-
vided by the counterpart positive argument and (ii) to propagate the negative
indices of the functor’s remainder to the succedent of the next conclusion.
That is, the first elimination ⊸E(1) creates the identification {k ↔ m}, and
propagates the positive leftover B−l to the next proof step, whereas the next
elimination⊸E(2) identifies {i ↔ l} and propagates C−j downwards. Upon
reaching the proof’s conclusion, we get to merge all identifications established

30 Dependency as Modality, Parsing as Permutation

along the proof1, which can then be applied as a mapping (e.g. to the lexico-
graphically first element) yielding a link-decorate judgement, in our case:

A−k ⊸B+i , B−i ⊸C+
j ⊢ A+

k ⊸C−j

Matching indices correspond exactly to the axiom links of Figure I.10b – the
two representations are in fact equivalent. Now, we really do know how to
freely move back and forth between the proof net and natural deduction pre-
sentation of proofs in ILL⊸.

Proof Nets and Search The question then is: when should we use which?
The original intention of proof nets was to provide a compact, bureacracy-
free representation of proofs that abstracts away from structural rules. In that
sense, their strength is also their weakness; same as the λ-terms they prescribe,
they encode the semantically essential part of a proof, but hide structural sub-
tleties that can prove hard to guess or recover. At the same time, performing
search over proof nets is a horrible idea; the number of possible links we need
to consider scales factorially with respect to the number of atoms in the proof
frame, and checking whether a set of links is valid is in the best case linear.
Due to these limitations, proof nets were envisaged as a compiled form of an
existing proof, rather than a canvas to find that proof on. We will not see proof
nets again for a while, but we will keep their memory warm in our hearts.
Because when we do in Chapter IV, we will challenge this perception, and see
how their parallel nature can actually be very convenient for heuristic proof
search. Until then, we can temporarily store them in our mental backlog.

3 Lambek Calculi

3.1 Dropping Commutativity

There is only one structural rule left2: it is time for ex to go. Dropping ex makes
the structures of our logic non-commutative. The transition, however, requires
some care. If we were to naively go about our business using the inherited ILL
connectives, we would soon stumble upon a pitfall. Recalling the shape of the
⊸E rule, we come to the realization that functions carried over to this new

1Let’s avoid any misteps here. The joining described is not set-theoretic union. Rather, we first
take the set-theoretic union, and then iteratively reduce the set by conflating all identifications that
agree in at least one element, up to a fixpoint. For instance, joining {i ↔ k} and {l ↔ i, j ↔ m}
yields {i ↔ k ↔ l, j ↔ m}. Such a situation could arise for example when attempting to find the
axiom links of non β normal proofs, like(

λxi .x
Ai⊸Bj
i x

Ak
j

)
x

Al⊸Bm
k

The added burden has the enormous benefit of yielding “β normalized” links and resolving po-
tential future headaches a priori.

2Or is there?

Introduction 31

logic are suddenly picky; they can only be applied to arguments to their right.
This should raise some flags: a directionally flavoured version of the impli-
cation is not bad in itself, but the presence of just such one such version is –
where shall we look for the left-biased one? The answer is simple: the confla-
tion between the two directions was natural, up until a moment ago; having
them both would not amount to much, since by ex they would be interderiv-
able. With ex removed, the veil is lifted and we can now see this clearly: there
were always two implications, except disguised by the same symbol! Let us
do our newfound friend justice, and make this distinction explicit.

The logic that provides us with the tools to accomplish this is due to Jim
Lambek [Lambek, 1958], and has come to be known as the Lambek calcu-
lus L. At this point, the careful reader will notice a chronological inconsis-
tency in our presentational tour: the Lambek calculus predates Linear Logic!
Nonetheless, it is in essence a refinement of its purely linear part – a substruc-
tural logic within a substructural logic – and our previous exposition makes us
better equiped to appreciate it. With commutativity gone, the Lambek calcu-
lus brings order – in the literal sense – to Linear Logic; assumptions must now
be used exactly in the order they were instantiated. It also brings forth the no-
tion of adjacency: structures joined by a rule are now immobile, and therefore
obliged to remain adjacent from then on, unless broken apart by abstractions.

Formulas in the Lambek calculus are generated by the grammar:

A, B, C := p | A\B | A/B | A⊗ B (I.16)

The rules of this fragment are presented in Figure I.12. Alternative presenta-
tions can include additive conjunction and/or either of the disjunctions, but
the key feature of interest lies in the two implications, / and \. The intuitive
way of reading those is as directed fractionals, the formula hidden under the
cover of the slash being the denominator, and the formula lying on it the nu-
merator. The elimination rule /E (resp. \E) can then be read as fractional sim-
plifications, whereby right (resp. left) multiplication by the divisor cancels out
the division as a whole. An analogus reading can be attributed to the intro-
duction rules, them now being the instantiation of a division by withdrawing
items from the left or right of the assumption sequence (it might be helpful
to think of /I as dequeuing and \I as popping from the assumptions in the
premise). The division paradigm is of pedagogical utility only, and we will not
take it any further for fear of (incorrectly) hinting at other properties of frac-
tionals being applicable in the logic. A noteworthy change of notation appears
in the elimination of the product: with ∆JΓK we denote a structure ∆ contain-
ing substructure Γ: ∆J K now serves as a context, i.e. a structure of assumptions
with a hole. The rule now claims it is acceptable to replace substructure A, B in
∆ by Γ, if Γ ⊢ A ⊗ B holds. The notions of structure and substructure depend
of course on the logic used – in the current setting, ∆ is a sequence, to which Γ
is a subsequence. The reformulation of the rule is necessary to arbitrate elimi-
nation of nested products, since their extraction to the right or left edge of an

32 Dependency as Modality, Parsing as Permutation

xi : A ⊢ xi : A
id

Γ ⊢ s : B/A ∆ ⊢ t : A

Γ, ∆ ⊢ s ◁ t : B
/E

Γ, xi : A ⊢ s : B

Γ ⊢ λxi.s : B/A
/I

Γ ⊢ s : A ∆ ⊢ t : A\B

Γ, ∆ ⊢ s ▷ t : B
\E

xi : A, Γ ⊢ s : B

Γ ⊢ λxi.s : A\B
\I

Γ ⊢ s : A⊗ B ∆Jxi : A, xj : BK ⊢ t : C

∆JΓK ⊢ case s of (xi, xj) in t : C
⊗E

Γ ⊢ s : A ∆ ⊢ t : B

Γ, ∆ ⊢ (s, t) : A⊗ B
⊗I

Figure I.12: Lambek calculus L.

assumption sequence is no longer possible. This also serves to better illustrate
a remark made earlier: the rule can be applied at arbitrary nesting depths,
each position corresponding to a supposedly different proof (consider for in-
stance that if ∆JΓK, and ΓJA, BK, then it is also the case that ∆JA, BK). Generally
speaking, the empty structure ∅ is now disallowed.

The Lambek calculus hails from an intuitionistic tradition, and is thus ame-
nable to a propositions as types interpretation [Wansing, 1990]. Adorning its
rules with faithful term rewrites translates into a type system that is both lin-
ear and ordered [Pierce, 2004]. Things get funky there: we now have two dis-
tinct modes of function application and λ abstraction, each pair with its own
reduction. We use ◁ and ▷ to denote right and left application, respectively
– the mnemonic is that the triangle points to the function – and λ and λto
denote the two kinds of anonymous functions.

3.1.1 Proof & Term Reductions

The proof reductions of Figure I.13 should be at this point straightforward to
decode. The only addition is the symmetric version of the familiar implica-
tional redex. For the redex of the product, the substituted A and B hypotheses
are now wrapped on both sides by a context Θ, following the formulation of

Introduction 33

A ⊢ A
id

.... s
Γ, A ⊢ B

Γ ⊢ B/A
/I

.... t

∆ ⊢ A

Γ, ∆ ⊢ B
/E

=⇒

.... t

∆ ⊢ A.... s

Γ, ∆ ⊢ B

.... t

Γ ⊢ A

A ⊢ A
id

.... s
A, ∆ ⊢ B

∆ ⊢ A\B
\I

Γ, ∆ ⊢ B
\E

=⇒

.... t

Γ ⊢ A.... s

Γ, ∆ ⊢ B

.... s

Γ ⊢ A

.... t

∆ ⊢ B

Γ, ∆ ⊢ A⊗ B
⊗I

A ⊢ A
id

B ⊢ B
id

.... u
ΘJA, BK ⊢ C

ΘJΓ, ∆K ⊢ C
⊗E

=⇒

.... s

Γ ⊢ A

.... t

∆ ⊢ B.... u
ΘJΓ, ∆K ⊢ C

Figure I.13: Lambek β redexes.

⊗E. The corresponding term reductions are:

(λxi.s) ◁ t
β
⇝ s[xi 7→t] (I.17)

t ▷ (λxi.s)
β
⇝ s[xi 7→t] (I.18)

case (s, t) of (xi, xj) in u
β
⇝ u[s 7→xi ,t 7→xj]

(I.19)

3.2 Dropping Associativity

Judging by the apparent absence of any more structural rules to remove, some-
one eager to be done with the whole story could at this point proclaim our
substructural tour finished. We are not quite done yet, however, for one last
structural equivalence still remains unchecked (one we have made extensive
use of, for that matter). The culprit can be found by going back to our origi-
nal definition of structures in the long and distant past of Subsection 1.1 – by
treating them as sequences, we have mindlessly equipped them with associa-
tivity for free, the use of which we never made explicit. The one to notice was
Lambek once more [Lambek, 1961]. In the new logic (pragmatically named
the non-associative Lambek calculus NL) the definition of a structure changes

34 Dependency as Modality, Parsing as Permutation

xi : A ⊢ xi : A
id

Γ ⊢ s : B/A ∆ ⊢ t : A

(Γ ·∆) ⊢ s ◀ t : B
/E

(Γ · xi : A) ⊢ s : B

Γ ⊢ λxi.s : B/A
/I

Γ ⊢ s : A ∆ ⊢ t : A\B

(Γ ·∆) ⊢ s ▶ t : B
\E

(xi : A · Γ) ⊢ s : B

Γ ⊢ λxi.s : A\B
\I

Γ ⊢ s : A⊗ B ∆J(xi : A, xj : B)K ⊢ t : C

∆JΓK ⊢ case s of (xi, xj) in t : C
⊗E

Γ ⊢ s : A ∆ ⊢ t : B

Γ, ∆ ⊢ (s, t) : A⊗ B
⊗I

Figure I.14: Non-associative Lambek calculus NL.

to:
Γ, ∆, Θ := A | (Γ ·∆) (I.20)

i.e. the structural unit of the empty sequence is no more, and the scope of the
binary structural binder is made explicit with brackets (we use the distinct
symbol · to tell this new structural binder apart from its associative sibling).
On top of adjacency and order, the non-associative Lambek calculus further
considers constituency; structures are now binary trees, with atomic proposi-
tions as their leaves and · as branching nodes, and judgements are differen-
tiated on the basis of the binary branching form their assumptions take. For-
mulas remain as they were, but the presentation of the rules changes to that
of Figure I.14 in order to accommodate the new, stricter structures. Merging
structures Γ and ∆ via \E, /E or⊗I is translated to building up a tree with the
two as branches. Decomposing a structure via an abstraction \I or /I now re-
quires that the formula abstracted over occurs not just at the edge of the tree’s
linear projection, but also at its top-most branching level. The notation ΓJ∆K
now denotes that ∆ is a subtree of Γ – for the product elimination ⊗E to be
applicable, A and B need not just be adjacent, but also commonly rooted.

The syntax of the isomorphic λ-calculus is identical to before, except this
time we use◀ and▶ to notationally differentiate with the non-associative ap-
plication (not unlike how we replaced the intuitionistic implication→with its
linear counterpart⊸ earlier). The new structural constraint on the introduc-
tion of a directed implication can be intuitively translated to a constraint on
the applicability of abstraction. Namely, the variable to abstract over needs to
occur at the top-most level of a function application in the term’s inductive

Introduction 35

LP ≡ ILL

L

NL

NLP

-comm

-asso

-asso

-comm

Figure I.15: (N)L(P): ILL and substructural friends.

body.1

3.2.1 Proof & Term Reductions

Proof & term reductions are notationally identical to those of the previous
subsection, modulo bracketing, and substituting white for black triangles. I
trust the missing picture is easy enough to create mentally.

3.3 The Full Landscape
We have seen NL as a refinement of L, and L, in turn, as a refinement of ILL.
The three can be perceived as points in a lattice of substructural logics, upon
which we can move by adding or removing structural rules at a global level;
this view lends ILL its alternative name LP, for the Lambek calculus with per-
mutation (also encountered as the Lambek-van Benthem Calculus [van Ben-
them, 1988]). At the top of the diamond we have ILL, where (linearity aside),
anything goes, and at the bottom we have NL, where neither associativity nor
commutativity hold. At the center, there’s L, where only associativity holds.
Next to it, an unexpected curiosity pops up: NLP (for the non-associative Lam-
bek with permutation), an offbeat logic where associativity holds but commu-
tativity doesn’t – its structures are mobiles: orderless, binary branching trees
that make no distinction between left and right daughters. Unlike its relatives,
NLP has received limited attention from theorists and practitioners alike. This
will still remain the case even after (if?) this manuscript sees the light of day,
but its peculiar structures will reemerge and have their moment to shine later
on.

4 Restoring Control

With every step we have taken further into substructuraland, we have been
paying a price in expressivity; it is now time for us to acknowledge the accu-

1Abusing terminology, here by inductive body we mean the term itself (if it’s an implicative
one), the term’s inner body (if it’s a sequence of abstractions), the left or right coordinate (if it’s a
product), or the nested body on which substitution is performed (if it’s a deconstructed product).

36 Dependency as Modality, Parsing as Permutation

mulated bill. Dropping contr and weak made us resource conscious, but theo-
rems of IL that required resource duplication or erasure became underivable.
Dropping ex forced us to pay attention to the order of assumptions, but costed
us access to theorems that required permutation to derive. Substituting the
structural comma (,) with the non-associative (·) cast our sequences to
trees, this time at the expense of theorems that required rebracketing. Woe is
us – is there even anything left we can derive?

Perhaps this is painting an overly dramatic picture, considering that none
of this is necessarily bad. From an epistemic perspective, the less structural
equivalences we take for granted, the better our mental grasp of structural
difference becomes. In the best case, if it just so happens that the kind of struc-
tures we want to investigate overlaps fully with the kind of structures our
logic can explicitly reason about, the distinction between theorem and non-
theorem becomes a refinement rather than a loss of expressivity. From a more
pragmatic perspective, more structural constraints means easier proof search,
and less theorems means faster exhaustion of possibilities. To make the scale
of the combinatorics tangible, reflect for a second on this. A single judgement
of n hypotheses in NL is but one of the Catalan number of bracketings C(n) it
would be syntactically undistinguishable from in L, each one of which in turn
is but one of the factorially many permutations n! it would be equivalent to in
LP. In the case for checking the satisfiability of a judgement (i.e. searching for
any valid proofs), all the above would have made for potential proof candi-
dates; in the case for attempting to enumerate the proofs of a judgement (i.e.
searching for all valid proof), they would all have needed to be exhausted.
The point to take home is that proof search becomes decidedly easier in the
absence of syntactic equivalences, so perhaps a double-edged sword would
have made for a better analogy than a bill.

The defeatist attitude here would be to just accept the trade-off between ex-
pressivity and complexity, weep for the theorems forever lost, take our victory
and walk away. The problem lies however in the common occasion where the
structure of objects under scrutiny overlaps only partially with a specific sub-
structural flavour, modulo some exceptional but real cases that require added
expressivity. In such a scenario, taking a step up in the hierarchy would cause
an undesirable combinatorial explosion, whereas staying put would sacrifice
our ability to argue about these exceptional cases. By contrast, the maximalist
attitude makes no concessions and seeks both for the cake to be whole and
the dog to be fed.1 What if there was a way to keep our logic computationally
tractable but with temporary, on-demand access to normally excluded reason-
ing tools?

1Direct translation of a silly but fitting Greek aphorism that won over the less politically
correct Italian equivalent (wine barrel full and wife drunk). In any case, cake is bad for dogs.

Introduction 37

Γ ⊢ s : □A

⟨Γ⟩ ⊢ ▼s : A
□E

⟨Γ⟩ ⊢ s : A

Γ ⊢ ▲s : □A
□I

ΓJ⟨xi : A⟩K ⊢ s : B ∆ ⊢ t : ♢A

ΓJ∆K ⊢ case ▽t of xi in s : B
♢E

Γ ⊢ s : A

⟨Γ⟩ ⊢ △s : ♢A
♢I

Figure I.16: Logical rules of modal inference.

4.1 The Logic of Modalities

The answer comes in the form of unary modalities, type-forming operators lent
from modal logics, that allow navigation between logics of different structural
properties. Unary modalities hold a key role in the presentation of full linear
logic; there, a single operator ! (called bang) would allow an embedding of
intuitionistic (non-linear) propositions into the linear regime, essentially act-
ing as a licensor of contr and weak. In our case, we will make do with two
modalities from temporal logic, the diamond ♢ and the box □.1

The two form a residuated pair, the properties of which can be formulated
either (i) in the form of a type-level biconditional derivability relation:

♢A ⊢ B iff A ⊢ □B (I.21)

or (ii) the monotonic behavior of its parts:

A ⊢ B =⇒ ♢A ⊢ ♢B (I.22)

A ⊢ B =⇒ □A ⊢ □B (I.23)

and the adjointness of their compositions, where♢□() is an interior and□♢()
a closure operator:

Γ ⊢ A =⇒ Γ ⊢ □♢A (I.24)

Γ ⊢ ♢□A =⇒ Γ ⊢ A (I.25)

The logical manipulation of these modalities is handled by corresponding
elimination and introduction rules, presented in Figure I.16. The presentation
is intentionally detached from a specific substructural strand – modalities are
plug-and-play to any member of the (N)L(P) family. Their incorporation adds
a new kind of structure to the ones provided by the underlying logic, altering
judgements accordingly:

Γ, ∆, Θ := . . . | ⟨Γ⟩ (I.26)

Angular brackets denote unary tree branches that behave slightly differ-

1Note that these are not the necessity/possibility duals of modal logic, but rather inverse du-
als, □ being past necessity and ♢ being future possibility. Read (I.24) as “what is, has always been
bound to be” and (I.25) as “what will have always been, is”.

38 Dependency as Modality, Parsing as Permutation

ent to the rest; they act as an impenetrable barrier that permits or hinders
the introduction or elimination of modal connectives in a judgement. The box
elimination rule □E grants us the option of removing a logical box from the
succedent of the premise (as long as it is its main connective), but encloses the
premises in angular brackets in the process. Its introduction counterpart □I
does the exact opposite: it frees a judgement’s assumptions from their brack-
ets, but puts the succedent proposition under the scope of a box. The diamond
behaves just the other way around. Its introduction rule ♢I is straightforward:
it offers the possibility of putting the succedent under the scope of a diamond,
in exchange wrapping the antecedents with brackets. The elimination rule ♢E
is more of a problem child, behaving akin to a unary product. Without locality
restrictions, it inspects a proof of B, the assumptions of which contain a sub-
structure ⟨A⟩ within context ΓJ K, and allows the post-hoc substitution of the
hypothesis together with its brackets by a structure ∆, if from it one can derive
♢A.

Rules are adorned with term rewrite instructions in the propositions as
types style, similar to how temporal logic can be operationalized in the λ-
calculus [Wansing, 2002]. The mnemonic is now two-dimensional: upward
triangles denote introduction and downward ones elimination, whereas black
triangles are for the box, white ones for the diamond. Term constructions for
the single-premise rules are uncomplicated: each type operation just leaves
the corresponding term footprint. This is not the case for the ♢E rule, which
requires some attention: the structural substitution of ⟨A⟩ for ∆ necessitates
a case construct that calls for a term substitution of the variable xi for ▽t.
Note that the free variables of the resulting expression (case ▽t of xi in s) are
the union of the free variables of t and those of s except for xi, which becomes
bound by the case construct. As for what the computational interpretation of
these esoteric term rewrites is, our insights are limited to the fact they form
a residuated pair that respects the normalizations prescribed by the typing
rules.

4.1.1 Proof & Term Reductions

The proof patterns of Figure I.17 exhibit introduction elimination chains of
modal operators, and thus constitute β redexes subject to normalization. The
first one is trivial: it just says that a sequential application of □I followed by
□E can be safely excised. The second one proposes that if a♢I is the last rule to
have been applied on the substitution branch t of the ♢E rule, it would make
sense to simply plug proof t in place of the proposition A hypothesized in the
other branch s. On the term level, these correspond to normalizations:

▼▲s
β
⇝ s (I.27)

case ▽△t of x in s
β
⇝ s[x 7→t] (I.28)

Introduction 39

.... s
⟨Γ⟩ ⊢ A

Γ ⊢ □A
□I

⟨Γ⟩ ⊢ A
□E =⇒

.... s
⟨Γ⟩ ⊢ A

A ⊢ A
id

.... s
ΓJ⟨A⟩K ⊢ B

.... t
∆ ⊢ A

⟨∆⟩ ⊢ ♢A
♢I

ΓJ⟨∆⟩K ⊢ B
♢E

=⇒

.... t
∆ ⊢ A.... s

ΓJ⟨∆⟩K ⊢ B

Figure I.17: Modal β redexes.

.... s
Γ ⊢ □A

⟨Γ⟩ ⊢ A
□E

Γ ⊢ □A
□I ≡

.... s
Γ ⊢ □A

A ⊢ A
id

⟨A⟩ ⊢ ♢A
♢I

.... s
∆ ⊢ ♢A

∆ ⊢ ♢A
♢E

≡
.... s

∆ ⊢ ♢A

Figure I.18: Modal η redexes.

The dual direction of η equivalences also holds – since these are discov-
ered in the literature less frequently than the more pedestrian implication
and product equivalences, we explictly present them in Figure I.18. The term
equivalences they materialize are:

▲▼s
η
≡ s (I.29)

case ▽s of x in △x
η
≡ s (I.30)

4.1.2 A Digression on Modal Terms

For the modally savvy, the term rewrites attributed to the modal rules might
seem unorthodox. A more common presentation employs the simpler meta-
syntax notation of term substitution. For instance, ♢E can often be spotted in
the wild as:

ΓJ⟨xi : A⟩K ⊢ s : B ∆ ⊢ t : ♢A

ΓJ∆K ⊢ s[xi 7→▽t] : B
♢E

40 Dependency as Modality, Parsing as Permutation

In this disguise, the rule is again seen as realizing a retroactive substitution
of xi with ▽t, except this time around the substitution is actually performed,
resulting in less cumbersome terms being carried around.

Opting for this alternative notation has, however, a number of negative
consequences. The more superficial one is that the main term connective does
not take scope at the outermost layer of the rule’s yield, but rather nested
arbitrarily deeply within it, unlike its better behaved version. From a proof-
theoretic perspective, normalization is now baked directly into the theory, as
the term yield of the rule exactly coincides with its β reduced form. At the
same time, all rule permutations boil down to having the exact same reduc-
tion, i.e. multiple previously distinct terms are conflated into a single rep-
resentation. This establishes an impicit syntactic equivalence on proofs that
claims that the exact position of the ♢E rule is syntactically irrelevant (so long
of course as the same variable xi is substituted by the same term ▽t). Finally,
the shorthand version hides variables; hypotheses that would be bound by the
case construct are instead erased and forgotten, obfuscating the term-to-proof
correspondence. All these are perhaps minor points not worth taking too seri-
ously, but for one concerned with concrete implementation the extra merit of
notational simplicity comes at the cost of equality checking become way more
tedious. With this in mind (and in a rare moment of excessive formal zeal), we
will exercise some self restraint and avoid indulging in the convenience of this
version.

4.1.3 Properties

Situating our unary operators within the modal logic zoo is no trivial endeav-
our. They are best characterized by the properties they satisfy, so inspecting
them should shed some light on their proof-theoretic behavior (as a bonus,
it will also help us get better acquainted with the kind of term rewrites their
rules prescribe). Figure I.19 presents the proof transformations equivalent to
the properties foretold: (a) and (b) for monotonicity, (c) and (d) for composi-
tion, and (e) and (f) for the two directions of the residuation law.

Worth a special mention are also the so-called triple laws:

♢A ⊣⊢ ♢□♢A (I.31)

□A ⊣⊢ □♢□A (I.32)

which can be intuitively read as claiming that prepending an already modal
type with (one or more) diamond-box pairs in alteration has no real effect, as
these can unconditionally cancel out or be expanded into. Figure I.20 presents
proofs of the above in both directions.

Introduction 41

.... s
xi : A ⊢ s : B

⟨xi : A⟩ ⊢ △s : ♢B
♢I

xj : ♢A ⊢ xj : ♢A
id

xj : ♢A ⊢ case ▽xj of xi in s : ♢B
♢E

(a) Monotonicity of the diamond.

.... s
xi : A ⊢ s : B

⊢ λxi.s : A⊸B
⊸I

xj : □A ⊢ xj : □A
id

⟨xj : □A⟩ ⊢ ▼xj : A
□E

⟨xj : □A⟩ ⊢ (λxi.s) ▼xj : B
⊸E

xj : □A ⊢ ▲(λxi.s) ▼xj : □B
□I

(b) Monotonicity of the box.

.... s
Γ ⊢ s : A

⟨Γ⟩ ⊢ △s : ♢A
♢I

Γ ⊢ ▲△s : □♢A
□I

(c) The closure ♢□().

xi : □A ⊢ xi : □A
id

⟨xi : □A⟩ ⊢ ▼xi : A
□E

.... s
Γ ⊢ s : ♢□A

Γ ⊢ case ▽s of xi in ▼xi : A
♢E

(d) And the interior □♢().

.... s
xi : A ⊢ s : □B

⟨xi : A⟩ ⊢ ▼s : B
□E

xj : ♢A ⊢ xj : ♢A
id

xj : ♢A ⊢ case ▽xj of xi in s : B
♢E

(e) Residuation law: from A ⊢ □B to ♢A ⊢ B.

.... s
xi : ♢A ⊢ s : B

⊢ λxi.s : ♢A⊸B
⊸I

xj : A ⊢ xj : A
id

⟨xj : A⟩ ⊢ △xj : ♢A
♢I

⟨xj : A⟩ ⊢ case ▽△xj of xi in λxi.s : B
♢E

xj : ♢A ⊢ ▲(case ▽△xj of xi in λxi.s) : B
□I

(f) Ditto, the other way around.

Figure I.19: Derivations for the various aspects of residuation.

42 Dependency as Modality, Parsing as Permutation

xi : □A ⊢ xi : □A
id

⟨xi : □A⟩ ⊢ ▼xi : A
□E

xj : □♢□A ⊢ xj : □♢□A
id

⟨xj : □♢□A⟩ ⊢ ▼xj : ♢□A
□E

⟨xj : □♢A⟩ ⊢ case ▽▼xj of xi in ▼xi : A
♢E

xj : □♢□A ⊢ ▲(case ▽▼xj of xi in ▼xi) : □A
□I

(a) Contraction of □♢□() to □().

xi : □A ⊢ xi : □A
id

⟨xi : □A⟩ ⊢ △xi : ♢□A
♢I

xi : □A ⊢ ▲△xi : □♢□A
□I

(b) Expansion of □() to □♢□().

xi : □♢A ⊢ xi : □♢A
id

⟨xi : □♢A⟩ ⊢ ▼xi : ♢A
□E

xj : ♢□♢A ⊢ xj : ♢□♢A
id

xj : ♢□♢A ⊢ case ▽xj of xi in ▼xi : ♢A
♢E

(c) Contraction of ♢□♢() to ♢().

(I.19c)
xi : A ⊢ ▲△xi : □♢A

⟨xi : A⟩ ⊢ △▲△xi : ♢□♢A
♢I

xj : ♢A ⊢ xj : ♢A
id

xj : ♢A ⊢ case ▽xj of xi in △▲△xi : ♢□♢A
♢E

(d) Expansion of ♢() to ♢□♢().

Figure I.20: The triple laws for the two modalities in both directions.

Introduction 43

4.2 Structural Reasoning

This detour may have proven lengthy, but has hopefully helped us acquire
a first taste for modalities. We now know how to introduce and eliminate
them and what the effect of doing so is on the antecedent structure, and got
a first glimpse of their properties, the term rewrites they prescribe and the
type inequalities (in the form of unidirectional derivations) they give rise to.
The question then becomes how to actually use them for the task at hand,
namely disciplined traversal between substructural logics. Structural reason-
ing is accomplished via structural postulates, rules of inference that enact com-
mutativity and associativity (or combinations thereof), except in a controlled
fashion. These are permissible only under strict conditions on the shape of the
antecedent structure and its constituents – this is exactly where the new kind
of structures will prove useful. There is no fixed vocabulary of structural rules,
as they are intended for application-specific finetuning of a universal logical
core, so we are free to design and populate it according to our own needs.

5 The Linguistic Perspective

Despite their presentation having intentionally been left vague and abstract,
the ideas explored so far have been a keystone element of computer science,
from its inception until recent modernity. Beyond that, they form the com-
mon theoretical underpinnings for the formal treatment of natural languages
and their various aspects, where they manifest as so-called Categorial Gram-
mars. Categorial grammars is a heavily overloaded term that refers to a wide
and diverse family of related formalisms, each with its own ambitions, goals,
strengths and weaknesses. The most encompassing way of defining a catego-
rial grammar is thus best accomplished through a high-level intersection of
their common points. A categorial grammar is usually tied to a logic, com-
monly a choice from the ones reviewed so far (or at least loosely inspired by
one). The choice of logic is part personal preference, but is usually motivated
by the degree of alignment between the options under consideration and the
characteristics of the target language – a factor that also comes into play is
also the trade-off between expressivity and complexity. On the basis of the
chosen logic, a categorial grammar has a lexicon; a mapping from primitive
linguistic entries (i.e. words) to formulas of that logic. Their dependence on a
lexicon grants categorial grammars their strongly lexicalized title – as the slo-
gan goes, words carry their combinatorics on their sleeves. With these two
components in hand, compiling composite structures for complex linguistic
entries (i.e. parsing) becomes a process of formal deduction dictated by the in-
terplay between the types of the participating atomic elements, and the rules
of inference the logic is equipped with. Categorial grammars are a staple of the
linguistic tradition and a point of attraction for practitioners, logicians and lin-
guists alike. In this section we will examine some of their main strands, with a
special emphasis on two spiritual progenitors of the unique flavour that is to

44 Dependency as Modality, Parsing as Permutation

Logic Computer Science Linguistics

Propositional Constant Base Type Syntactic Category
Inference Rule Term Rewrite Phrase Formation

Axiom Variable Word (or Empty Category)
Provability Type Inhabitation Grammaticality
Deduction Program Synthesis Parsing

Figure I.21: The Curry-Howard correspondence applied in linguistics.

be developed and presented later in this thesis.

5.1 Type-Logical Grammars

The earliest take at a categorial grammar are the AB grammars attributed to
Kazimierz Adjukiewicz [Ajdukiewicz, 1935] and Yehoshua Bar-Hillel [Bar-
Hillel, 1953], but it was Jim Lambek that raised the existing notation and op-
erations into the glory of a fully-fledged type logic. In their original purpose as
envisaged by Lambek, his calculi would find use as grammar logics, i.e. univer-
sal systems of grammatical computation – a perspective adopted and advanced
into what has presently come to be known as type-logical grammars [Morrill,
1994; Moortgat, 1997, 2014]. In a natural language setting, the linear base of
the Lambek calculi is naturally equated to the resource sensitivity of grammar:
words play a single grammatical role in the phrases they help form – there’s
no ignoring or reusing items at will. There, the original Lambek calculus L
would be the logic of strings; it can faithfully portray the generation of natural
language utterances, where arbitrary reordering is a destructive process that
ruins coherence. Its stricter version NL would instead be the logic of consti-
tuency trees; on top of word order, it further specifies constituency structure,
allowing a distinction between different syntactic analyses of the same sur-
face form. Type-logical grammars extend the Curry-Howard correspondence
with a new axis, that of natural language; the transference of points of interest
across that axis is presented in Figure I.21; our motto shall from now on be
parsing as deduction.

To see this in action, let’s consider first an instantiation of a Lambek cal-
culus NL with the set of primitive types Prop0 populated with signs charac-
terizing the grammatical role of a piece of text that can independently stand
on its own (i.e. phrasal categories or, more crudely, parts of speech). In a toy
fragment and for illustrative purposes, this could look like:

Prop0 := {N, NP, Smain, PP}

for a grammar able to reason about nouns N, noun phrases and bare nouns
NP, sentential clauses Smain, prepositional phrases PP and functions thereof
in English. One might wonder: what happened to the remaining kinds of

Introduction 45

eye :: N

oceans, suns, deeps , dolphins
sea-nymphs, whirlpools :: NP

the :: NP/N

opiate, strange, unrememberable, their :: NP/NP

poured :: ITV := NP\S

behold :: TV := (NP\S)/NP

there :: ADV\ := (NP\S)\(NP\S)

never :: ADV/ := (NP\S)/(NP\S)
litten :: (NP\NP)/PP

may :: AUX := (NP\S)/(NP\S)

Table I.2: Toy lovecraftian lexicon of pure Lambek types.

phrasal categories, like verbs, adjectives and adverbs? These would indicate
grammatical functions, and in fact should be represented as such. An intran-
sitive phrase, for instance, is a grammatical function that would consume a
left-adjacent noun phrase to produce a sentence, therefore it would material-
ize as NP\Smain. It follows that a transitive phrase or copula would then be
of type (NP\Smain)/NP, a function that requires a right-adjacent noun phrase
to produce an intransitive, whereas a bitransitive, requiring two, would be
((NP\Smain)/NP)/NP, etc. In the same vein, determiner phrases NP/N con-
sume right-adjacent nouns and lift them to noun phrases, whereas prenomi-
nal adjectives NP/NP are noun phrase (or noun) endomorphisms modifying
them but keeping their type intact (and the other way around for postnominal
use). Adverbs would also be endomorphisms, except this time higher-order –
(NP/NP)/(NP/NP) for adjectival and (NP\S)\(NP\S) for verbal modification,
respectively.

Linguistic reasoning is not done ex nihilo – formulas like the above are
supplied by and grounded in the lexicon. This does not exclude the option of
utilizing hypotheticals instantiated by the axiom rule id – hypothetical reason-
ing lives, in fact, at the core of the type-logical inferential process, as we will
soon see. It means, rather, that our building blocks will for the most part be
lexical constants, proof objects that behave just like variables, except they are
neither wantonly typed nor amenable to abstraction. To convey the difference
between the two, we will instantiate the latter with a seemingly new rule of
inference, lex, which simply performs lexical lookup, i.e. pulls a word’s type
from the lexicon.

The internet guide how to write a dissertation I am consulting insists it is
important to set clear goals and stick to them. It seems like sound advice, so
we are going to do just that, and attempt to demonstrate the analysis of a non-
contrived example in the type-logical framework. The following looks like a
fitting match:

Opiate oceans poured there, litten by suns that the eye may never behold,

46 Dependency as Modality, Parsing as Permutation

strange ⊢ NP/NP
lex

dolphins ⊢ NP
lex

strange ·dolphins ⊢ NP
/E

(a) Derivation for strange dolphins.

the ⊢ NP/N
lex

eye ⊢ N
lex

the · eye ⊢ NP
/E

(b) Derivation for the eye.

litten : (NP\NP)/PP
lex

by : PP/NP
lex

suns : NP
lex

by · suns ⊢ PP
/E

litten · (by · suns) ⊢ NP\NP
/E

(c) Derivation for litten by suns.

sea-nymphs : NP
lex

of : (NP\NP)/NP
lex

unremeberable : NP/NP
lex

deeps : NP
lex

unrememberable ·deeps ⊢ NP
/E

of · (unrememberable ·deeps) ⊢ NP\NP
/E

sea-nymphs · (of · (unrememberable ·deeps)) ⊢ NP
\E

(d) Derivation for sea-nymphs of unrememberable deeps.

opiate : NP/NP
lex

oceans : NP
lex

opiate · oceans ⊢ NP
/E

poured : NP\S
lex

there : ADV\
lex

poured · there ⊢ NP\S
\E

(opiate · oceans) · (poured · there) ⊢ S
\E

(e) Derivation for opiate oceans poured there.

Figure I.22: Deriving simple multiplicative phrases in NL.

Introduction 47

and having in their whirlpools strange dolphins and sea-nymphs of un-
rememberable deeps.

H.P. Lovecraft, Azathoth (1938). In Leaves (2).

Let’s pave the way towards this ambitious goal with the miniature mock-up
lexicon of Table I.2, and see just how far it can get us.

Figure I.22 presents derivations for parts of the goal phrase, and our very
first linguistic examples (!) – their purely applicative nature should make them
straightforward to decipher. The two proofs of I.22e and I.22c can readily be
combined to yield a derivation for the phrase opiate oceans litten by suns poured
there. Close, but not quite there... The participial litten, which acts here as a
postnominal modifier, has the special property of being able to position it-
self either immediately after the noun phrase opiate oceans it modifies, or de-
ferred until after the matrix head poured has made an appearance (with any
adverbials attached to it). Attempting to produce a derivation for the origi-
nal version seems like a dead-end enterprise, though. We are not to blame for
this incompetence: the problem lies with the grammar – we could never hope
to capture this behavior with our current machinery. Despite their elegance
and formal appeal, grammars relying purely on Lambek calculi suffer from
an aversion to anomalies like discontinuities and long-distance dependencies,
which natural languages tend to exhibit at an unfortunately striking degree.

One could of course attept to cop out of the problem by just introduc-
ing ad hoc raised forms for movable parts, one per distinct position they can
be found at. The repercussions of such a move would soon, however, prove
catastrophic. On the one hand, the once reliably concise lexicon would become
overpopulated by endless variations on the same theme: each expansion point
of a lexical type would percolate into all other lexical items it interacts with (ei-
ther as consumers or producers thereof), the effect cascading at progressively
larger lexical neighborhoods, until (if ever) an eventual equilibrium is reached.
On the other hand, raised types obfuscate the functional relations and consti-
tuency structures we have worked so hard to reveal and incorporate, virtually
beating the very purpose of the logic. Relaxing the structural constraints of
the logic to globally allow movement and/or rebracketing is no good either
(at least not for the formal syntactician). Spurious ambiguity would be the
least of our concerns as we would be faced with overgeneration, i.e. the unwel-
come ability to derive proofs that have no correspondence to correct linguistic
structures whatsoever, leading us back to square zero. If you have not skipped
any parts yet, your reward should now manifest as an unwavering faith for a
solution, and a premonition of what is to come: modalities to the rescue!

5.1.1 The Role of Modalities

Ever since their original integration with the vanilla multiplicative toolkit,
modalities have played an indispensable role in the history and development
of type-logical grammars [Hendriks, 1995; Moortgat, 1996; Kurtonina and

48 Dependency as Modality, Parsing as Permutation

ΓJ∆, (Θ, ⟨Φ⟩)K ⊢ A

ΓJ(∆, Θ), ⟨Φ⟩K ⊢ A
ass♢

ΓJ(∆, ⟨Θ⟩), ΦK ⊢ A

ΓJ(∆, Φ), ⟨Θ⟩K ⊢ A
mix♢

(a) In rule format.

Φ

Θ∆

ass♢←−−

ΦΘ

∆ Θ

Φ∆

mix♢←−−− Φ

Θ∆

(b) Corresponding tree transformations. Double edges denote bracketed substructures.

Figure I.23: Controlled associativity/mixed commutativity.

Moortgat, 1997; Moortgat, 1997; Vermaat, 1999]. They find use as either
licensors or inhibitors of structural rewrites, now in the form of movement
and rebracketing of words and phrases. Prime examples and standard items
for consideration include the controlled associativity and mixed associativity-
commutativity rules of Figure I.23a (and the corresponding tree transforma-
tions of Figure I.23b, if you have a disdain for brackets). The first rule ass♢
allows a unary branch ⟨Φ⟩ to escape its bind to its neighbour Θ, forcing it to
associate to the structure ∆ to its left instead. The second one mix♢ allows a
unary ⟨Θ⟩ to swap position with its right-adjacent neighbor Φ, disassociating
from its left neighbour ∆ in the process.

Figure I.25 progresses our agenda by accounting for the presence of a (hy-
pothetical) movable postnominal modifier via the rules of Figure I.23. To make
the hypothesis movable, we need to instantiate it as a box – for the pure func-
tion contained therein to be applicable, the box needs to be removed, enclosing
the hypothesis in angular brackets, which in turn license its structural extrac-
tion to the rightmost edge of the assumptions via the mix♢ rule. At that point,
we need to eliminate the bracketed variable with a term of the correspond-
ing type, plus a diamond. For this to work, we need to make the tiniest of
modifications to our lexicon so as to get access to the sought-after diamond:

litten :: ♢□(NP\NP)/PP (I.33)

Intuitively, the new type requests a prepositional phrase complement to the
right, after the consumption of which it produces a movable postnominal
modifier that can penetrate constituent phrase boundaries to the left. Equipped
with it, we can derive both the local versions hinted at earlier, and their dis-
continuous variations; see Figure I.24 for a proof of concept.1

This methodology is in fact adopted from Moortgat [1999], where it finds

1Get it? It’s an actual proof.

Introduction 49

....
opiate · oceans ⊢ NP

xi : □(NP\NP)
id

⟨xi⟩ ⊢ NP\NP
□E

(opiate · oceans) · ⟨xi⟩ ⊢ NP
\E

....
poured · there ⊢ NP\S

((opiate · oceans) · ⟨xi⟩) · (poured · there) ⊢ S
\E

((opiate · oceans) · (poured · there)) · ⟨xi⟩ ⊢ S
mix♢

(a) Extracting a hypothetical postnominal modifier...

(I.24a)

((. . .) · (. . .)) · ⟨xi⟩ ⊢ S

litten : ♢□(NP\NP)/PP
lex

by : PP/NP
lex

suns : NP
lex

by · suns ⊢ PP
/E

litten · (by · suns) ⊢ ♢□(NP\NP)
/E

((opiate · oceans) · (poured · there)) · (litten · (by · suns)) ⊢ S
♢E

(b) ...before substituting the hypothesis for its material instance.

Figure I.24: Deriving long-distance postnominal modification with the aid of
type assignment (I.33).

similar use in dealing with the grammatical ambivalence of relativizers like
that or which. Bound relative clauses headed by complementizers like the above
contain a subordinate sentence with a gap, which can vary in its position. Let’s
make things unnecessarily convoluted for the sake of clichéd self-referentialism
by considering the relative clause which can vary in its position of the previous
sentence. There, the subordinate clause can vary in its position contains a gap
in the subject position, which the head a gap occupies implicitly. This is not
the case in the last relative clause which the head gap occupies implicitly, whose
subordinate clause the head gap occupies implicitly contains a non-peripheral
(nested) gap in direct object position. What a mess! The subject-relative case
can easily be dealt with in a pure Lambek grammar, as the gap hypothesis
occurs adjacent to the verb phrase, but the same cannot be said for the object-
relative case, whose structurally free gap seems to pose a challenge. The solu-
tion comes in the form of two distinct type assignments for the relativizer, one
per grammatical role fulfilled:

that :: RELs := (NP\NP)/(NP\S) (I.34)

that :: RELo := (NP\NP)/(S/♢□NP) (I.35)

The second version launches a mobile NP hypothesis via the same diamond-
box pattern showcased earlier. The proof of Figure I.25 employs this typing
in combination with the ass♢ rule to derive the object-relative clause that the
eye may never behold, which applied to suns and combined with the proof of
Figure I.24 yields the correct form of the postnominal modifier opiate oceans
poured there, litten by suns that the eye may never behold, bringing us one step

50 Dependency as Modality, Parsing as Permutation

that : RELo
lex

(I.22b)

the · eye ⊢ NP

may : AUX
lex

never : ADV/
lex

behold : TV
lex

xi : □NP
id

⟨xi⟩ ⊢ NP
□E

behold · ⟨xi⟩ ⊢ NP\S
/E

never · (behold · ⟨xi⟩) ⊢ NP\S
/E

may · (never · (behold · ⟨xi⟩)) ⊢ NP\S
/E

(the · eye) · (may · (never · (behold · ⟨xi⟩))) ⊢ S
\E

(the · eye) · (may · ((never · behold) · ⟨xi⟩)) ⊢ S
ass♢

(the · eye) · ((may · (never · behold)) · ⟨xi⟩) ⊢ S
ass♢

((the · eye) · (may · (never · behold))) · ⟨xi⟩ ⊢ S
ass♢

xj : ♢□NP
id

((the · eye) · (may · (never · behold))) · xj ⊢ S
♢E

(the · eye) · (may · (never · behold)) ⊢ S/♢□NP
/I

γ := that · ((the · eye) · (may · (never · behold))) ⊢ NP\NP
/E

(a) Deriving an object-relative clause...

litten : ♢□(NP\NP)/PP
lex

by : PP/NP
lex

suns : NP
lex

(I.25a)

γ ⊢ NP\NP

suns · γ ⊢ NP
\E

by · (suns · γ) ⊢ PP
/E

litten · (by · (suns · (that · ((the · eye) · (may · (never · behold)))))) ⊢ ♢□(NP\NP)
/E

(b) ...and using it to derive the full long-distance postnominal modifier.

Figure I.25: An object-relative clause in action, prompted by type assign-
ment (I.35).

closer to success.

5.1.2 Intricacies of the Lexicon

The analysis just performed illustrated the necessity of (at least) two distinct
types for the same string that, hinting at the fact that the lexicon is not a function
from words to types, but rather a relation between them. One more opinion-
ated than I might argue that each type is mapped to a distinct lexical item (one
per relativization type), and that the identification between their strings is a
mere coincidence, an idiosyncracy of the language, or anyway irrelevant; even
if a string is multi-typed, each type is a witness to a unique latent word hiding
behind it. Of different effect but similar flavour would be the line of defense
that appeals to null syntax, a covert process that can conditionally nominalize
infinitives, determine plural nouns, relativize gerunds or do any sort of thing,
really; a word is never multi-typed, but ad hoc type conversions can take place
out of the blue.

Introduction 51

Even under premises as radical as the above, occassions of type undeter-
minism are all but rare. Consider for instance the verb to have, whose argu-
ment structure for the possessive meaning alone is specified (according to its
FrameNet entry [Baker et al., 1998]) as having mandatory owner and pos-
session semantic arguments (corresponding to syntactic subject and direct ob-
ject), but also any combination of depictive, duration, explanation, manner
and temporal optional complements, in various orders – each variation neces-
sarily expressed with a distinct type. In our case, we need the type:

having :: (♢□(NP\NP)/NP)/PP (I.36)

for a gerund that requisits first a prepositional complement phrase and then an
object noun phrase (i.e. having somewhere something) to act as a movable post-
nominal modifier (an argument permutation that FrameNet does not even
contain an example of!).

The reality of optional arguments and non-trivial argument order varia-
tions alone should suffice to convince us of the issue at hand: lexical type ambi-
guity is a real phenomenon, and one that is here to stay. Having acknowledged
that, the question shifts to how we deal with it. From a theoretical perspective,
we can incorporate the question of type choice into our proof-machinery via
the additive conjunction & of ILL, which is essentially recovering the func-
tional nature of our lexicon, with type assignments reformulated as nested
choices:

A1&(A2&(A3 . . . (An−1&An))) (I.37)

and the subscript enumerating each of the possible instantiations in the con-
text of a single sentence. In such a regime, the lexical assignment rule lex
would need to be followed by a sequence of projections to isolate the desired
type, contributing little other than excessive verbosity.1 Given the limited use
we would have for all this “proof waste”, we will stick with the current for-
mulation of the lex rule – if it helps us sleep better at night, we can imagine
it as a shorthand notation for the correct sequence of projections requested by
the current analysis, the construction of which we have delegated to a silent
and omnipotent oracle. Be at rest knowing that this oracle will be temporary
and for presentation purposes only; we will address its demystification later
on.

The ambiguity problem is exacerbated and pushed to the limit by func-
tion words enacting context-dependent chameleon roles. Coordinators are the
main culprit; they can bind together pairs of the same (almost) arbitrary type
to produce an instance of the conjoined pair, a complex phrase of the same

1A more ambitious usecase could allow the simultaneous derivation of multiple unique anal-
yses, and the incorporation of derivational ambiguity arising out of lexical choice as a first class
citizen of the proof theory – a proof object that resides within it rather than a notion in the meta-
theory above it. The repercussions of this would be magnificent for semantic applications, but no
concrete results that I am aware of were ever produced in that direction.

52 Dependency as Modality, Parsing as Permutation

type. We will write:
(χ\χ)/χ (I.38)

to denote the coordinator type pattern parameterized over the type variable χ,
which can be instantiated as any type of our type grammar.1

Armed with this last trick, we are now in possession of all the knowl-
edge necessary to finally tackle the full derivation. First, we must instanti-
ate the polymorphic coordinator once by substituting χ for NP to derive the
noun phrase conjunction strange dolphins and sea-nymphs of unremememberable
deeps, as portrayed in Figure I.26a. This, together with our freshly typed hav-
ing, allows the derivation of the mobile postnominal modifier having in their
whirlpools strange dolphins and sea-nymphs of unrememberable deeps, as in Fig-
ure I.26b. At this point, we must employ another instance of the polymorphic
coordinator, this time substituting χ for ♢□(NP\NP) – this opens the door to
the derivation of the structurally free complex postnominal modifier litten by
suns that the eye may never behold and having in their whirlpools strange dolphins
and sea-nymphs of unrememberable deeps, which can apply to the nested opiate
oceans in the same fashion as the proof of Figure I.24. At long last, we are
rewarded with a type-checking and syntactically faithful analysis of the full
sentence (and a check mark on how to write a dissertation). Collaging these last
bits together is left as an exercise to the motivated reader, for fear of repetition
sterilizing the quotation of its beauty.

5.1.3 Subtleties of Proof Search

The last sentence was merely a test to weed out the uncommited. Of those that
passed it and attempted to really proceed with the derivation, the observant
ones should have found themselves at multiple crossroads regarding the or-
der of applying the numerous modifiers in the sentence – a matter carefully
concealed in the derivations presented so far. The choice of NL over L implies
that scope assigned to competing modifiers should reflect in a corresponding
judgement that differs to the rest in the bracketing structure of its antecedents
(and of course the proof justifying it). The following endsequents are all valid
alternatives provable with the lexical types of Figure I.26a:

i. strange · (dolphins · (and · (sea-nymphs · (of · (unrememberable ·deeps)))))
ii. strange · ((dolphins · (and · sea-nymphs)) · (of · (unrememberable ·deeps)))

iii. (strange · (dolphins · (and · sea-nymphs))) · (of · (unrememberable ·deeps))

1This is in fact an exemplar of parametric polymorphism, which is properly formalized in
second-order intuitionistic logic and its type-equivalent System F [Girard, 1972; Reynolds, 1974].

Γ, α : TYPE ⊢ M : σ

Γ ⊢ λα.M : Πα.σ
ΠI

Γ ⊢ M : Πα.σ ∆ ⊢ B : TYPE

Γ, ∆ ⊢ M B : σ[α 7→B]
ΠE

The rules above showcase the introduction and elimination of types quantified over types Πα.σ,
and the term analogue of abstracting over types λα.M. In this notation, a coordinator would be
a quantification of type Πχ.(χ\χ)/χ, that when reduced against arbitrary type A would yield
(A\A)/A. Other than this unique occurrence of polymorphism, second order term and type con-
structions are an overkill to our purposes here, relegating this comment to footnote status.

Introduction 53

(I.22a)
strange ·dolphins ⊢ NP

and : (NP\NP)/NP
lex

(I.22d)
sea-nymphs · (of · (unrememberable ·deeps)) ⊢ NP

and · (sea-nymphs · (of · (unrememberable ·deeps))) ⊢ NP\NP
/E

δ := (strange ·dolphins) · (and · (sea-nymphs · (of · (unrememberable ·deeps)))) ⊢ NP
\E

(a) Deriving noun-phrase coordination...

having : (♢□(NP\NP)/NP)/PP
lex

in : PP/NP
lex

their : NP/NP
lex

whirlpools : NP
lex

their ·whirlpools ⊢ NP
/E

in · (their ·whirlpools) ⊢ PP
/E

having · (in · (their ·whirlpools)) ⊢ ♢□(NP\NP)/NP
/E

(I.26a)
δ ⊢ NP

(having · (in · (their ·whirlpools))) · δ) ⊢ ♢□(NP\NP)
/E

(b) ...and using it to construct yet another postnominal modifier.

Figure I.26: Filling in the missing bits using the polymorphic type (I.38).

iv. ((strange ·dolphins) · (and · sea-nymphs)) · (of · (unrememberable ·deeps))
v. (strange ·dolphins) · (and · (sea-nymphs · (of · (unrememberable ·deeps)))))

This is an admittedly stretched case of derivational ambiguity, a situation
where from the same lexical assignments one can obtain multiple syntactic
analyses, which may correspond to equinumerous subtly or drastically di-
verging semantic interpretations (more on that in a bit). Derivational ambigu-
ity is not necessarily bad, provided the divergence in the proofs constructed is
linguistically meaningful.1 What is, however, worth noting is the structural
discrepancy between what we see (a flat sequence) and what we want to
parse into (a binary branching tree). Even though constituency structure is
de facto acknowledged by linguistic theory, it is a latent mental construct re-
vealed through (or assigned by) the parsing process, rather than an observable
feature of text that we can assume as a given. The connotation of this is that
even though backwards proof search in NL may find use in verifying the plau-
sibility of a type-assigned, pre-bracketed phrase, forward search is necessary
in eliciting a type and a bracketing structure from a phrase.

5.1.4 Syntax-Semantics Interface

The game played so far, challenging as it may be, might prove dull to someone
indifferent to syntax or its type-theoretic formulation; we will attempt to fix
that by expanding our target crowd to semanticists and Montagovian gram-
marians, who are said to recite daily before bedtime:

I fail to see any interest in syntax except as a preliminary to seman-
tics. [Montague, 1970]

1Just think of all the different things you could do with pijamas, elephants, telescopes, etc.

54 Dependency as Modality, Parsing as Permutation

Montague’s Insights A full exposition to Montague grammar is beyond the
scope of this thesis, but a brief introduction to some of its foundations will go
a long way in helping us perceive its relevance to the type-logical approach.
Richard Montague was disillusioned with the tackling of natural language
semantics at the time, which he found formally inadequate and lacking the
elegance of contemporary approaches to mathematical syntax. He sought to
fill this gap by arguing that formal and natural languages are morally indis-
tinguishable – different instantiations of the same theory – and advocating
their treatment in just the same way. Influenced by his own background on
modal logic and the highly influential work of Saul Kripke on possible world
semantics [Kripke, 1963], the machinery he thought was best fit for the task at
hand was a model theoretic semantics axiomatized on the basis of set theory
and higher-order logic; his work is marked with heavy use of λ notation, the
adoption of which by today’s working linguist is largely attributable to him.

Revolutionary as it may have been at the time, this semantic machinery
and its antiquated details are largely irrelevant to this work. What is of prime
interest, though, is Montague’s treatment of the passage between syntax and
semantics. In his view, if syntax is an algebra describing the process of synthe-
sizing a grammatically passable sentence, semantics is another algebra pro-
viding a logical recipe for evaluating that sentence’s truth-validity. The two
systems are viewed as distinct, but not independent: they are connected by
a unidirectional transformation that preserves and transports (certain aspects
of) the structure of the former into the latter, in other words a homomorphism.
The slogan “syntax is an algebra, semantics is an algebra and meaning is a
homomorphism between them” summarizes this notion [Janssen, 2014]. The
gracefulness of this statement is easy to miss. It proclaims that the seman-
tic expression assigned to complex linguistic entries mimics (or is at least in-
formed by) the structural form of their syntactic analyses. This perspective ac-
tuates the ideal of compositionality, a concept passed down by Gottlob Frege
and summarized as stating that the meaning of a complex expression is com-
putable on the basis of its primitive expressions and the rules that dictate their
combination [Partee et al., 1984].

The Type-Logical View Let’s appropriate this view and translate it to the
type-logical setup, as done by van Benthem [1988]. Here, syntax is a type the-
ory: a logic whose rules are equated to term rewrite instructions, and proofs
to programs. Semantics can also be a type theory; one with its own types and
terms, potentially more expressive and certainly unriddled by (some of) the
structural constraints of grammar. The meaning interpretation would then
be a homomorphism that translates syntactic proofs and programs to corre-
sponding semantic ones – a translation from one constructive logic to another.
Its design would need to follow the rule-to-rule approach, according to which
every syntactic construction will have its homomorphic image in the target
system [Bach, 1976]. This viewpoint is quite open-ended and admits a whole
lot of creative liberty with respect to the the nature of the target system and

Introduction 55

Surface Syntax
Σ := NL♢,□

Derivational Semantics
T := ILL⊸

⌈.⌉
?

Target Semantics

Figure I.27: The syntax-semantics interface in the type-logical setting.

the details of the translations. The only constraint imposed is the only one
that matters: the high-level principle of compositionality needs to hold, i.e. the
function-argument structure specified by syntax needs to be carried through
to semantics.

Interestingly, the approach permits a division of labour between syntax,
semantics and everything in between: the end-to-end translation can be de-
composed into a sequence of homomorphisms, each intermediate step expli-
cating an additional layer of added expressivity (or fortfeited structure) and
singling out a subset of the desiderata towards the end-target. A natural first
stop would be that of ILL⊸ as a derivational semantics logic: it captures the
function-argument structures prescribed by the syntactic proof and respects
its no-reuse principle, but without the semantically void headaches of order
and bracketing structures, or that of the rules manipulating them.

To make things concrete, let’s consider this in the context of the source logic
Σ being identified with the instantiation of NL♢,□ of the previous section, and
the intermediate logic T being its ILL⊸ mirror image. Using the superscript
X := Σ | T to distinguish between the two logics, we will denote with PropX

0
the set of atomic types of X, and UX its type universe, i.e. the inductive closure
of types under type operators. Similarly, we will denote with ConsX its set of
base types, VarsX its set of variable names, and TermsX its well-formed terms,
i.e. the inductive closure of terms under term operators.

The homomorphism ⌈.⌉ operates on proofs, i.e. typed terms, and thus does
double duty: it transforms both terms and types of Σ to corresponding terms
and types of T. It is handy, then, to define it on the basis of two compo-
nents ⟨η, θ⟩, where η : UΣ → UT and θ : TermsΣ → TermsT, such that
⌈s : A⌉ = θ(s) : η(A), where the typing relation at the right-hand side of
the equation must hold (i.e. the two maps mutually respect derivability). On
the type level, η must specify a pointwise mapping η0 from the base types
PropΣ

0 of the source logic to types UT of the intermediate logic. In our case,
we will consider this a bijection from PropΣ

0 to PropT
0 , such that η0(p) 7→ p

(i.e. instantiating PropT
0 as a literal copy of PropΣ

0). Then, to extend η0 to η we
need to specify its action on complex types, where it essentially forgets the
unary modalities and removes the directionality of the implications, as shown
in Table I.3. In the exact same vein, θ pointwise sends constants and variables
to their copycat images, and is then inductively defined on complex terms,
where it casts directional applications and abstractions to undirectional ones,
drops modal decorations and performs the simplified substitution prescribed
by the ♢E rule, as shown in Table I.4. As an example, applying ⌈.⌉ to the proof

56 Dependency as Modality, Parsing as Permutation

of Figure I.25 should yield the derivational term:

litten (by (that (λxi.(may (never (behold xi))) (the eye))) (suns))
NP⊸NP (I.39)

UΣ UT

p ∈ PropΣ
0 7→ η0(p) := p ∈ PropT

0
A\B, B/A 7→ η(A)⊸η(B)
♢A, □A 7→ η(A)

Table I.3: Translating NL♢,□ types to ILL⊸.

TermsΣ TermsT

c ∈ ConsΣ 7→ θ0(c) := c ∈ ConsT

xi ∈ VarsΣ 7→ θ0(xi) := xi ∈ VarsT

s ◀ t, t ▶ s 7→ θ(s) θ(t)
λxi.s, λxi.s 7→ λθ(xi).θ(s)
△s, ▲s, ▼s 7→ θ(s)

case ▽t of xi in s 7→ θ(s)[θ(xi) 7→θ(t)]

Table I.4: Translating NL♢,□ terms to ILL⊸.

With the Curry-Howard isomorphism as our guiding star, there’s no peril
in navigating between syntactic and semantic theories. Syntactic proofs are
equated to syntactic terms, on which our homomorphism can be applied to
yield derivational semantics terms, in turn equatable to derivational seman-
tics proofs. This might seem like a lot of work to simply “forget” syntax, but it
showcases how one can step up the computational hierarchy of substructural
logics in order to attain access to more expressive semantics. Note also that
such a path is merely a suggestion and not an imperative; a more ambitious
line of thought could maintain that word order variations (and the structural
rules licensing them) can carry semantic cues which, albeit subtle, need to be
upheld in the compositional meaning translation; see for instance the contem-
porary work of Correia [2022] for a quantum (!) interpretation of the control
modalities.

The Role of the Lexicon The sentiments of the previous paragraph could be
met with some skepticism. A reader with a critical eye might argue that se-
mantic interactions not already manifested in the syntax may never be born of
this process, and thus wonder whether this added expressivity can serve any
real purpose or offer any tangible benefits. To dispel such doubts, we need to

Introduction 57

keep in mind that derivational terms refrain from specifying lexical meaning,
i.e. they treat lexical items as semantic black boxes. Opening these black boxes
would reveal flat entries (i.e. term constants) in the case of words providing
meaning ingredients, as opposed to structurally rich entries (i.e. complex terms
with internal structure) in the case of words providing meaning recipes.1 Struc-
turally rich lexical entries can utilize any term constructor made available by
the semantic logic; crucially, this includes constructors that escape the narrow
borders of the homomorphic codomain (i.e. do not have a syntactic origin). Of
course, such terms are still bound by the promise to obey the type dictated by
the homomorphic translation of their original syntactic type, and must also
be derivable theorems of the semantic logic they live in. Increasing expressiv-
ity therefore may indeed not in itself add to the function-argument structures
inherited from syntax, but provides the tools necessary for complex lexical
semantic actions to take effect as needed.

A case in point is the coordinator and conjoining the two modifiers of the
previous section: litten by . . . and having in . . . ; each individual conjunct fulfills
a descriptive filter that intersects the properties of its argument with the prop-
erties attributed by its internal meaning. That is, of all objects of type ∗ (where
∗ an arbitrary type, denoting the interpretation target of NP), the first mod-
ifier withdraws all but those lit by unseeable suns, whereas the second one
withdraws all but those with weird entities in their whirlpools. For the full
conjunction to have the intended meaning, i.e. evoke the image of exclusively
this subset of oceans characterized by both the above properties, the coordi-
nator would need to enact the role of a portable implementation of function
composition2 as in Figure I.9, so as to allow the iteration of the intersective
modifiers:

λxixjxk.xi (xj xk) :: (∗⊸∗)⊸(∗⊸∗)⊸ ∗⊸∗ (I.40)

Even though no non-standard term constructors are to be found in this recipe,
it is nontheless not a theorem of the source logic, as function composition is
not derivable in NL. In a set-theoretic semantics domain unbound by linearity
constraints, another (perhaps more reasonable) translation might make use of
an added operator ∧ : ∗ → ∗ → ∗ for set-theoretic intersection (∗ now an
arbitrary set), to deliver the recipe:

λxixjxk.(xi xk) ∧ (xj xk) :: (∗→∗)→(∗→∗)→∗→∗ (I.41)

1This distinction is usually paralleled with the linguistic distinction between content and func-
tion words, but commiting to this being the case is an unecessary restriction. Depending on the
end-target semantics logic and the granularity of the semantic lexicon, content words might still
be assigned complex term structure – a common trick, for instance, in delivering dependent type
semantics; see the book of Chatzikyriakidis and Luo [2020] for an overview of recent develop-
ments.

2Before anyone gets angry: I am neither pitching some provocative theory of conjunction
semantics here, nor secretly advocating for the dot-combinator – just trying to make a point.

58 Dependency as Modality, Parsing as Permutation

Tectogrammar
Σ := ILL⊸

Phenogrammar
T := ILL⊸

Semantics
?

⌈.⌉

Figure I.28: The syntax-semantics interface in the abstract categorial setting.

5.2 Abstract Categorial Grammars

So far, we have been predisposed to treating syntax as the hidden process
that forms grammatically correct sentences. It is insightful to contrast this
treatment with the view of Curry [1961], who thought of syntax as a two-
layered hierarchy of grammaticality criteria. The deep layer, called tectogram-
mar, would be concerned solely with the well-typedness of grammatical func-
tion domains and the validity of their interpretations. The shallow layer, called
phenogrammar, would be where tectogrammatical proofs are transformed and
cast to surface forms that abide by the linear order and constituency restric-
tions imposed by the language. Type-logical grammars pose no challenge to
the legitimacy of this distinction: it should be clear that phenogrammar, in
Curry’s terms, is our syntactic logic, and tectogrammar is what we earlier
referred to as derivational semantics. In being tectogrammar-first, however,
they diverge in its operationalization. The computational pipeline they pro-
pose is sequential in nature, and follows the Aristotelian path from observ-
able evidence to latent variables: the surface string is perceived as the yield of
a (shallow) syntactic proof, from which a deep semantic proof is extracted. The
operationalization closer to Curry would be inverted, placing phenogrammar
at the top of the generative process, and following the Platonic information
flow from deep and abstract to shallow and concrete. This perspective is em-
bodied by abstract categorial grammars [de Groote, 2001] and their contem-
porary and closely related lambda grammars [Muskens, 2001] – both for-
malisms make extensive use of ILL⊸ and the Curry-Howard isomoprhism
to obtain a phenogrammatic realizations via the homomorphic translation of
a tectogrammatic parse. Our presentation will stick to the former, as they are
closer in spirit to what is to come later.

5.2.1 Basic Definitions

In its original definition, an abstract categoral grammar consists of two instan-
tiations Σ, T of ILL⊸, and a map between them. The source instantiation Σ
provides a set of base types PropΣ

0 , and the so-called abstract vocabulary: a set
of abstract constants ConsΣ, each assigned a type from UΣ. The target instan-
tation T provides another set of base types PropT

0 , and constants ConsT with

Introduction 59

types from UT, called the object vocabulary. The map between them is once
again a homomorphism ⌈.⌉, defined on the basis of ⟨η0, θ0⟩. Not unlike be-
fore, η0 is seen as implementing a mapping PropΣ

0 → UT, and θ0 a mapping
ConsΣ → TermsT, both pointwise defined. Their homomorphic extension is
trivially obtained by recursively defining their actions on implicational types,
function terms and λ abstractions, where they simply mimic the source type-
and term- structure. This formulation lends itself nicely to the notion of gram-
mar composition, if one is to use the object logic of a grammar as the abstract
logic of another. Each grammar is accompanied by two languages; the abstract
language, i.e. the set of terms (of some distinguished type pd ∈ PropΣ

0) deriv-
able in the source logic, and the object language, i.e. the set of object terms the
abstract language maps into. For the phenogrammar to tectogrammar picture
to be made evident, the distinguished type needs to be mapped to the func-
tional string type pd 7→ str, forcing terms of the object language to evaluate to
strings. Note that, despite appearances, str is a first-order type ∗⊸∗ (where
∗ some arbitrary primitive) so as to permit the view of string concatenation +
as function composition, identical to (I.40), with the identity function enacting
the empty string.

5.2.2 Artificial Languages

Abstract categorial grammars are characterized by two measures of complex-
ity: the maximal order of source constants’ types, and the maximal order of the
codomain of η0. The two together constitute the grammar’s class, which con-
cisely describes the sort of languages the grammar can model. This can prove
effective in revealing a more granular stratification underlying the Chomsky
hierarchy of formal grammars, when the latter are embedded into abstract
categorial equivalents; as such, the framework has found extensive use as a
meta-language for the study and formalization of formal grammars (as done
by de Groote and Pogodalla [2004], inter alia). 1

To see this in practice, let’s have some meta-fun pretty-printing the types
of (N)L♢,□ by modeling their type formation rules (which constitute a context-
free grammar) using an abstract categorial grammar. First item on the agenda
is the specification of our two logics Σ and T. The source logic Σ will provide
the abstract backbone of the type grammar, containing a single base type, that
of a well-formed “type” PropΣ

0 := {TYPE}. The abstract vocabulary is then
populated in Figure I.29 by all abstract constants denoting base “types”2 and
“type” constructors. The target logic T will be our phenogrammatic printer
tasked with translating abstract terms (“types”) to object terms (strings). We
will need a single object base type PropT

0 := {∗}, such that η0(TYPE) = str,
the type alias of ∗⊸∗. Some auxiliary object constants are necessary before we

1There is a certain irony in formal grammars requiring or benefiting from formalization. If
you’re having trouble parsing this, consider that formal languages are essentially ad hoc rules on
strings; by formalization we mean giving these rules the type-theoretic treatment they deserve.

2In hindsight, that might have been an unfortunate choice of term2 to overload.

60 Dependency as Modality, Parsing as Permutation

ConsΣ := {n :: TYPE, np :: TYPE, pp :: TYPE, np :: TYPE,
dia :: TYPE⊸TYPE, box :: TYPE⊸TYPE

ldiv :: TYPE⊸TYPE⊸TYPE

rdiv :: TYPE⊸TYPE⊸TYPE}

Figure I.29: Abstract lexicon for the language of (N)L♢,□ types.

Abstract Constant Object Term

n N

np NP

pp PP

s S

dia λxi.♢+ xj
box λxi.□+ xk
ldiv λxixj.(+ xi + \+ xj +)

rdiv λxixj.(+ xj + / + xi +)

Table I.5: Object translation for the lexicon of Figure I.29.

proceed: opening and closing brackets, a diamond and a box the two implica-
tions, and a unique match for each unique constant abstract constant (i.e. each
abstract constant whose type is of order zero). The above – all of type str, and
underlined to distinguish from functional symbols – are used by the abstract
constant translation θ0 defined in Table I.5: base constructors are mapped to
their corresponding string representations, the two unary modalities simply
concatenate their symbol to their single argument, whereas the two implica-
tions infix their arguments with the a slash or backslash, and wrap the result
under brackets.

Figure I.30 presents the construction of the type previously assigned to
litten, ♢□(NP\NP)/PP (contexts are intentionally left empty and axioms re-

rdiv

TYPE⊸TYPE⊸TYPE

dia

TYPE⊸TYPE

box

TYPE⊸TYPE

ldiv

TYPE⊸TYPE⊸TYPE

np

TYPE

np

TYPE

ldiv np np : TYPE
⊸E

box (ldiv np np) : TYPE
⊸E

dia (box (ldiv np np)) : TYPE
⊸E

pp

TYPE

rdiv (dia (box (ldiv np np))) pp : TYPE
⊸E

Figure I.30: Constructing the type assignment of (I.33).

Introduction 61

placed by abstract constants for brevity). Applying the homomorphic transla-
tion to its abstract term yields a printout in the form of the object term below
(source function-argument brackets substituted with indendation levels for
legibility):

⌈rdiv (dia box (ldiv np np))) pp⌉
= λxixj.(+ xj + / + xi +)

PP

λxk.♢+ xk

λxl .□+ xl

λxmxn.(+ xm + \+ xn +)

NP

NP

β∗
⇝ (♢□(NP\NP)/PP)

(I.42)

Six reduction steps later and... voilà – our pretty printer works! The maximal
order of the abstract constants is 1, and the maximal order of the translation is
2, making our grammar’s complexity class (1, 2), the subset that encapsulates
context-free grammars.1

5.2.3 Human Languages

Elegant and successful as they might be in their meta-theoretical enterprises,
abstract categorial grammars have not fared as well with linguistic applica-
tions, in large part due to their computationally intractable nature. On the one
hand, they stand out from the rest of the categorial family in not being lex-
icalized by default. The conceptual separation between lexicon and rules no
longer holds: rules are fixed to the ones supplied by ILL⊸, but inference is
largely guided by the abstract constants. Abstract constants may contain lexi-
cal items that make their way to the final (object) derivation, or otherwise sim-
ply be compositional recipes that leave no imprint whatsoever. At the same
time, the framework is overly reliant on the constant map θ0 (defined on a
per-item basis) for the translation into the object language to take effect. Even
in the lexicalized setup where the abstract lexicon is populated by words and
words only, every abstract constant needs to be assigned both an abstract type
and a unique object term for every phenogrammatic behavior it exhibits; two
lexical dimensions, compared to the one of vanilla categorial grammars. En-
forcing grammaticality while blocking overgeneration of the object language
similarly requires a careful, parallel finetuning of both the abstract language
and the translation – gone is the adage of words carrying their combinatorics
on their sleeves. What’s worse, words triggering higher-order tectogrammatic
phenomena will then need object translations of an even higher order for their

1Or (2,2) if we set sail from O(p) = 1 for the base case p ∈ Prop0 in (I.9), as commonly done
in abstract categorial grammar literature.

62 Dependency as Modality, Parsing as Permutation

surface forms, making the design and population of a strict tectogrammatic
translation ⌈.⌉ practically unfeasible. This part could in principle be partially
mitigated by flattening complex syntactic phenomena into lower-order aliases
in the source domain, outsourcing their expansion to a parallel grammar for
concrete semantics – though this is less of a solution and more of a deferral. Be-
yond practicality, there are also foundational issues at stake, as resorting to a
lexical enumeration of phenogrammatic forms evidences inability to perform
linguistic generalization – what Moot [2014] calls a problem of descriptive inad-
equacy revolving around any abstract replacement to a Lambek higher-order
type. Last but not least, it is hard to imagine an abstract categrial grammar in
action: it is unclear how to procure an abstract proof object from the evaluated
yield of its object translation (i.e. the string form we are most likely encounter
in the open) using traditional proof-theoretic disciplines – the two layers of
function-argument structures (abstract- and object- level) and their interact-
ing reductions would unnerve even the sturdiest of parsers, or so it seems.

The appealing simplicity and elegance of the tectogrammatic logic is there-
fore counterbalanced by an increasingy bulky and cumbersome transition to
the (equally simple, yet far less elegant) phenogrammatic logic. The problem
is of course more pronounced for natural languages, which overstep the strict
confines of their formal counterparts. If only we had a way to keep just the
good part of a type-driven and semantically transparent deep syntax, without
having to get involved with all the tedious labour of its surface materialization
or the translation to it... Spoiler alert: we will, in Chapter IV.

5.3 Alternatives

Type-logical and abstract categorial grammars have so far monopolized our
interest, but not due to an absence of alternatives. The extended type-logical
family includes relatives like the displacement calculus [Morrill et al., 2011]
and hybrid type-logical grammars [Kubota and Levine, 2012]; each offers a
unique perspective in treatment in the tackling of discontinuities, but neither
concerns us much here, for our agenda is different.

Further away from the radiant warmth of type theory, we find a deviant
from the categorial tradition in combinatory categorial grammars [Ades and
Steedman, 1982; Szabolcsi, 1989; Steedman, 2022]. These stray from the norm
by rejecting the very idea of the syntactic variable (and with it, hypotheti-
cal reasoning), citing reasons of cognitive plausibility and parsing complexity.
Obviously, a categorial grammar stripped of hypothetical reasoning would
not amount to much on its own: it would only be able to resolve syntactically
flat sentences with uninteresting semantics. To circumvent the problem, com-
binatory categorial grammars incorporate a collection of rules lent from the
combinatory logic of Curry et al. [1958], albeit in restricted form. The first such
rule is morpholexical, allowing types to be raised once before being adminis-
tered to the derivation, thus forcing a flip in the local function-argument struc-
ture and semantic scope. The remaining rules are essentially four instances of

Introduction 63

function composition – one for each unique pair of directional implications
considered. The absence of hypothetical reasoning means that these are no
longer derivable theorems of some underlying theory, but ad hoc schemata,
fixed a priori to fit their designated purpose. To counteract overgeneration,
these rules are to be made available only to some empirically defined subset
of the full lexicon. With respect to the interface, a combinatory derivaton can
be cast into a semantic λ term the usual way; by assigning to each rule a corre-
sponding term constructor. Unlike before, this procedure is a non-invertible
transformation rather than an isomorphic correspondence; the purity of the
Curry-Howard correspondence is lost, traded away for the aforementioned
decrease in parsing complexity.

In spite of their non-minor differences, the agendas of type-logical gram-
mars and combinatory categorial ones are aligned, at least at a high level: they
both stipulate the existence of syntactic universals that guide structure forma-
tion, utilize them as a pathway to semantics à la Montague, and acknowledge
the need for language-specific fine-tuning; one exercising proof-theoretic con-
trol via structural rules, the other controlling the applicability of the so-called
combinatory rules via lexical adjustment. For better or worse, combinatory
categorial grammars have taken the lion’s share of the practitioners’ focus:
they boast an assortment of tools and annotated corpora across languages,
the size of which far exceeds that of their less popular relatives – to the point
where the term categorial grammars has become an almost synonym of com-
binatory categorial grammars. I hope that, by its end, this thesis will have
slightly adjusted the scales towards a healthier epistemological pluralism.

6 Key References & Further Reading

Key references for this chapter were the Stanford Encyclopedia of Phisolo-
phy entry on type-logical grammars [Moortgat, 2014] and the tried-and-true
extended introduction books on λ-calculi and type theories of Sørensen and
Urzyczyn [2006] and Pierce [2004]. Moral credit is owed to my once faithful
travel companion, the categorial grammar bible of Moot and Retoré [2012];
it provides an accessible yet detailed documentation of most of the concepts
hinted at in this chapter. Sections 1 and 2 draw heavily, both in content and in
style, from the excellent tutorial paper of Wadler [1993] on linear type theory
– waning presentational influences might be discernible up to Section 4.

If unhappy about this chapter ending, or unsatisfied with the exposition
provided, here’s some extra reading material to keep you company. For a de-
tailed inquiry on proof nets and their linguistic applications, or an exemplar of
what an actual great dissertation looks like, take a look at my co-supervisor’s
one [Moot, 2002]. For a more mathematically eloquent presentation of modal-
ities and their potential as tools of inferential and structural reasoning, refer
to the (also superb) dissertation of Bernardi [2002]. For a slightly outdated
but still very educative overview of abstract categorial grammars, the lecture

64 Dependency as Modality, Parsing as Permutation

notes of Kanazawa and Pogodalla [2009] should prove handy. If your eco-
conscious side was moved by linear logic, but you find yourself lacking the
bravery of facing the original manuscript of Girard [1987], the lecture notes
of Troelstra [1992] would make for a good alternative. If on the other hand
you were intrigued about the vast expanse of type theories beyond the tiny
scope of this thesis, the entry point to the downwards descent into the rabbit
hole should be the seminal work of Martin-Löf [1982]. A convincingly easy-
to-swallow application of such type theories in the formal semantics world is
extensively summarized by Chatzikyriakidis and Luo [2020]. If you do like
formal semantics but big lambdas give you nausea, there’s a broad selection
of books to go for; I still find myself guiltily cross-checking definitions and
examples with that of Winter [2016] at times. Finally, if what caught your at-
tention was the historical drama at the beginning of the chapter, you will enjoy
reading about the history of constructivism by Troelstra [2011].

Chapter I Bibliography

S. Abramsky. Computational interpretations of linear logic. Theoretical com-
puter science, 111(1-2):3–57, 1993.

A. E. Ades and M. J. Steedman. On the order of words. Linguistics and philoso-
phy, 4(4):517–558, 1982.

K. Ajdukiewicz. Die syntaktische Konnexitat. Studia philosophica, pages 1–27,
1935.

E. Bach. An extension of classical transformational grammar, 1976.

C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley FrameNet project. In
COLING 1998 Volume 1: The 17th International Conference on Computational
Linguistics, 1998.

Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language,
29(1):47–58, 1953.

H. P. Barendregt et al. The lambda calculus, volume 3. North-Holland Amster-
dam, 1984.

R. A. Bernardi. Reasoning with polarity in categorial type logic. PhD thesis,
Utrecht Institute of Linguistics OTS, Utrecht University, 2002.

S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. John
Wiley & Sons, 2020.

A. Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(2):56–68, 1940.

A. D. Correia. Quantum distributional semantics: Quantum algorithms applied to
natural language processing. PhD thesis, Utrecht University, 2022.

H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20(11):584–590, 1934.

66 Dependency as Modality, Parsing as Permutation

H. B. Curry. Some logical aspects of grammatical structure. Structure of lan-
guage and its mathematical aspects, 12:56–68, 1961.

H. B. Curry, R. Feys, W. Craig, J. R. Hindley, and J. P. Seldin. Combinatory logic,
volume 1. North-Holland Amsterdam, 1958.

V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathe-
matical logic, 28(3):181–203, 1989.

N. G. de Bruijn. Automath, a language for mathematics. In Automation of
Reasoning, pages 159–200. Springer, 1983. Original manuscript from 1968.

P. de Groote. On the strong normalization of natural deduction with
permutation-conversions. In International Conference on Rewriting Techniques
and Applications, pages 45–59. Springer, 1999.

P. de Groote. Towards abstract categorial grammars. In Proceedings of the 39th
Annual Meeting of the Association for Computational Linguistics, pages 252–259,
2001.

P. de Groote and S. Pogodalla. On the expressive power of abstract categorial
grammars: Representing context-free formalisms. Journal of Logic, Language
and Information, 13(4):421–438, 2004.

P. De Groote and C. Retoré. On the semantic readings of proof-nets. In Formal
grammar 1996, pages 57–70. FoLLI, 1996.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.

J.-Y. Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

S. Guerrini. A linear algorithm for MLL proof net correctness and sequential-
ization. Theoretical Computer Science, 412(20):1958–1978, 2011.

P. Hendriks. Ellipsis and multimodal categorial type logic. In Proceedings of
Formal Grammar, pages 107–122. Citeseer, 1995.

A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsbericht
Preußische Akademie der Wissenschaften Berlin, physikalisch-mathematische
Klasse II, pages 42–56, 1930.

W. A. Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.
Original manuscript from 1969.

T. Janssen. Foundations and applications of Montague grammar. PhD thesis, Uni-
versity of Amsterdam, 2014. Original publication date 1983.

M. Kanazawa and S. Pogodalla. Advances in abstract categorial grammars:
Language theory and linguistic modeling. Lecture notes, ESSLLI, 9, 2009.

Chapter I Bibliography 67

S. A. Kripke. Semantical analysis of modal logic i normal modal propositional
calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963.

Y. Kubota and R. Levine. Gapping as like-category coordination. In Interna-
tional Conference on Logical Aspects of Computational Linguistics, pages 135–
150. Springer, 2012.

N. Kurtonina and M. Moortgat. Structural control. Specifying syntactic struc-
tures, pages 75–113, 1997.

F. Lamarche. Proof nets for intuitionistic linear logic: Essential nets, 2008.

J. Lambek. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154–170, 1958.

J. Lambek. On the calculus of syntactic types. Structure of language and its
mathematical aspects, 12:166–178, 1961.

P. Martin-Löf. Constructive mathematics and computer programming. In
Studies in Logic and the Foundations of Mathematics, volume 104, pages 153–
175. Elsevier, 1982.

R. Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

M. Moortgat. Multimodal linguistic inference. Journal of Logic, Language and
Information, 5(3):349–385, 1996.

M. Moortgat. Categorial type logics. In Handbook of logic and language, pages
93–177. Elsevier, 1997.

M. Moortgat. Constants of grammatical reasoning. Constraints and resources in
natural language syntax and semantics, pages 195–219, 1999.

M. Moortgat. Typelogical Grammar. In E. N. Zalta, editor, The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring
2014 edition, 2014.

R. Moot. Hybrid type-logical grammars, first-order linear logic and the de-
scriptive inadequacy of lambda grammars. arXiv preprint arXiv:1405.6678,
2014.

R. Moot and C. Retoré. The logic of categorial grammars: a deductive account of
natural language syntax and semantics, volume 6850. Springer, 2012.

R. C. A. Moot. Proof nets for linguistic analysis. PhD thesis, Utrecht Institute of
Linguistics OTS, Utrecht University, 2002.

G. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, 1994.

68 Dependency as Modality, Parsing as Permutation

G. Morrill, O. Valentı́n, and M. Fadda. The displacement calculus. Journal of
Logic, Language and Information, 20(1):1–48, 2011.

A. S. Murawski and C.-H. Ong. Dominator trees and fast verification of proof
nets. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer
Science (Cat. No. 99CB36332), pages 181–191. IEEE, 2000.

R. Muskens. Lambda grammars and the syntax-semantics interface, 2001.

B. Partee et al. Compositionality. Varieties of formal semantics, 3:281–311, 1984.

B. C. Pierce. Advanced topics in types and programming languages. MIT press,
2004.

D. Prawitz. A proof-theoretical study. Uppsala: Almqvist & Wilkselll, 1965.

J. C. Reynolds. Towards a theory of type structure. In Programming Symposium,
pages 408–425. Springer, 1974.

B. Russell. Mathematical logic as based on the theory of types. American jour-
nal of mathematics, 30(3):222–262, 1908.

M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism.
Elsevier, 2006.

M. Steedman. Combinatory categorial grammar, 2022.

A. Szabolcsi. Bound variables in syntax (are there any?). Semantics and contex-
tual expression, 295:318, 1989.

A. S. Troelstra. Lectures on linear logic. CSLI Lecture Notes 29, 3, 1992.

A. S. Troelstra. History of constructivism in the 20th century. Set Theory, Arith-
metic, and Foundations of Mathematics, pages 150–179, 2011.

J. van Benthem. The semantics of variety in categorial grammar. John Benjamins,
1988.

W. Vermaat. Controlling movement. PhD thesis, Utrecht Institute of Linguistics
OTS, Utrecht University, 1999.

P. Wadler. A taste of linear logic. In International Symposium on Mathematical
Foundations of Computer Science, pages 185–210. Springer, 1993.

H. Wansing. Formulas-as-types for a hierarchy of sublogics of intuitionistic
propositional logic. In Workshop on Nonclassical Logics and Information Pro-
cessing, pages 125–145. Springer, 1990.

H. Wansing. Sequent systems for modal logics. Handbook of philosophical logic,
pages 61–145, 2002.

Y. Winter. Elements of formal semantics: An introduction to the mathematical theory
of meaning in natural language. Edinburgh University Press, 2016.

CHAPTER II

Typing Dependency Structure

Predicates are functors,
complements – diamonds,
adjuncts – boxes;
Everything a type.

The previous chapter initiated us into the history-rich world of substruc-
tural logics in the intuitionistic tradition. Along the (artificially homogenized)
story, we got to dip our toes into linguistic waters, where we saw these logics
thrive and prosper, finding their place as the foundation for categorial gram-
mars. The many flavours of categorial grammars all have a single common
denominator: they treat syntax as a hierarchical structure that puts phrases to-
gether from small to big, starting from words and reaching up to the sentence,
the imprint being a natural deduction tree (and perhaps a phrasal bracketing
structure). This emphasis on the phrase, combined with the distinctive shape
of the categorial parse, allows for a partial parallel to be drawn between cate-
gorial grammars and phrase structure grammars, despite their stark method-
ological and theoretical contrasts. Phrase structure grammars are rule-based
systems that assign categories to phrases according to their syntactic function,
and manipulate phrasal formation by specifying how their constituent parts
combine – the produce being a bracketing structure, commonly visualized in
tree format. A different approach to grammatical theory abandons the consti-
tuency relation, adopting the dependency relation in its stead. Dependency
relations do not seem compatible with the categorial setup at a first glance:
they are flat, and lack the notion of finite phrasal parts – in showing no attach-
ment to iterative phrasal division, they are also not obviously compositional.

In this, chapter we will focus our efforts into bridging this gap between

70 Dependency as Modality, Parsing as Permutation

these two perspectives under a unified categorial grammar setup. We will
motivate the incorporation of dependency relations into the categorial vocab-
ulary by repurposing existing and well-studied tools that remain faithful to
the type theory roots the previous chapter has established (spoiler: it’s the
modalities). We will finally discuss how their inclusion alters the structural
paradigms of the previous chapter, and the opportunities and problems this
change comes with.

7 Phrase vs. Dependency Structure

Before we get to theorycrafting, it would be useful to try and clarify what
exactly is meant by constituency- and dependency- structure, and how the
two differ.

7.1 Phrase Structure Grammars

Phrase structure grammars build on the observation that certain phrases seem
to act as rigid and independent chunks, sometimes referred to as constituents.
Viewed from within, these phrases may be rich in internal structure, but keep
it sealed off to the outside. Viewed externally (i.e. in the context of a wider
phrase that contains them), they are indivisible units, at least for the purposes
of phrasal composition. Phrases are inventorized according to their syntactic
categories. If one so wishes, one can for the most part replace a phrase for an-
other of the same category, with no effect to grammaticality or local structure,
which suggests they are functionally indiscernible. The examples below tes-
tify to this1; the underlined phrases can be freely interchanged – despite their
wildly different internal structures, substituting one for another has no effect
on the outer sentential structure:

i. he · (beheld · (the · city))
ii. he · (beheld · (the · ((glittering ·minarets) · (of · (the · city)))))

iii. he · (beheld · ((such · beauty) · (of · ((red · (and ·white)) ·flowers))))
iv. he · (beheld · ((some · (feature · (or · arrangement))·(which · (he · ((had · known) · before))))

These so-called constituents interact, then, with one another depending not
on their contents, but rather their categories. This perspective promotes a dis-
ciplined approach to grammar modeling, dating back to the formal gram-
mars of Chomsky [1956], the archetypical example being context-free gram-
mars [Chomsky, 1956; Backus, 1959]. There, the construction of complex ex-
pressions is guided by production rules, grammatical recipes that dictate what
categories can sequentially combine, in what order, and what the category of
their combination is. The above example would correspond, for instance, to

1Sourced from H.P. Lovecraft, Celephaı̈s (1922). In The Rainbow, vol. 2.

Typing Dependency Structure 71

S

(II.1)

VP

(II.2)

NP

. . .

TV

beheld

NP

he

(a) Context-free parse tree.

S

▷

NP\S

◁

NP

. . .

(NP\S)/NP

beheld

NP

he

(b) Tree-formatted Lambek derivation.

Figure II.1: A phrase-structure grammar parse tree (a) contrasted with a Lam-
bek abstract syntax tree (b).

production rules of the form:

S→ NP VP (II.1)
VP→ TV NP (II.2)

claiming that one of the ways to make a verb phrase VP involves concatenat-
ing a transitive verb TV with a noun phrase NP, which in turn can be plugged
to the right of another NP to produce a declarative sentence S – each rule leav-
ing a bracketing structure (or binary tree) in its wake (see Figure II.1a).

Even though context-free grammars are no longer seriously considered
in the linguistic world, they have directly influenced most early attempts at
grammar design – and, by extension, their later successors and refinements.
Notational evidence of this past are more than noticeable today, ranging from
the wide adoption of tree-style notation for syntactic analyses to the concep-
tual syncretism of constituency grammars and phrase structure ones. More
up-to-date frameworks expand upon the barebones context-free backend with
niceties like a separation of functional dominance and linear precedence, added
rules that manipulate movement and discontinuity, the proclamation of a sin-
gle category as the head of a production rule (or subtree), feature markings that
carry semantic, morphological or phonological information, incorporation of
dependency information, etc. [Gazdar et al., 1985; Jacobson, 1987; Pollard
and Sag, 1994; Dalrymple, 2001, inter alia].

To our ill fortune, the field of formal syntax is actually an informal mess,
more akin to a mine field rather than an academic one; it’s best if I tread care-
fully and refrain from overextending myself here, in order to avoid setting off

72 Dependency as Modality, Parsing as Permutation

unseen traps or causing easily avoidable confusion. The point I want to make
is that the focal center of the above formalisms is the phrase and its structure
– as such, they are all referred to as phrase structure grammars, regardless
of whatever extra fluff they carry or what their expressive capacity is. In that
broader sense of the term, and removing any implicit connotations of intel-
lectual lineage, categorial grammars can also be conceived as phrase-centric.
Pure Lambek systems, for one, also explicate how phrases are combined, ad-
here to hierarchical forms similar to those of context-free grammars (except
beautifully, see Figure II.1b) and in fact have the same expressive capacity
with respect to string formation (i.e. the two are weakly equivalent) [Pentus,
1993]. Categorial grammars abstract away from the rule inventory by utiliz-
ing the smallest and purest set of rules possible – those of function application
and variable abstraction – and internalize what used to be rule-imposed struc-
ture within the lexical categories themselves. Bracketing structure is now the
footprint of function application, and the interface with semantics is natural-
ized by virtue of the Curry-Howard correspondence, as we saw earlier. Rather
than a VP category and rule (II.1), we have the type NP\S – transparent with
respect to both its syntactic combinatorics and semantic function. Performing
the function application on a left-adjacent NP will then result to a local tree
structure, not unlike the corresponding production rule – see Figure II.1 for
a comparison. Note that in reality, categorial derivations in the type-theoretic
tradition resemble trees only locally, since in high-order phenomena involving
abstractions the unary, non-terminal λ nodes will either need to be uniquely
named with the variable they are binding, or otherwise point to it with an ad-
ditional edge – hence a directed acyclic graph could make for a more accurate
representation format. Long story short, even without extensions to the log-
ical core for managing discontinuity, calling deductive parsing constituency
parsing would obviously not be doing the former justice; yet despite their
methodological and theoretical divergences, their end yield is comparable –
the antecedent structures of Figures I.22 to I.26 testify that the former may in
fact be seen as subsuming the latter.

7.2 Dependency Grammars

The constituency tradition has co-evolved along the opposing view of depen-
dency grammars [Tesnière, 2015; Gaifman, 1965; Sgall et al., 1986; Mel’cuk,
1988; Sleator and Temperley, 1995, inter alia]. Dependency grammars reject
the binary phrasal division that constituency grammars abide by, and instead
adopt a flatter structural form, the only unit of which is the word. Words
are connected with one another by dependency arcs, i.e. directed edges be-
tween word pairs. Each word can have arbitrarily many outgoing edges (de-
pendents), but only a single incoming edge (head) – the exception is the root
word which has no head of its own (i.e. the head of the matrix clause). A word
is said to directy dominate its dependents, and indirectly dominate all words
its dependents dominate (directly or otherwise) – e.g. the root indirectly dom-

Typing Dependency Structure 73

inates every other word in the sentence. This distinction between head and
dependent is central to dependency grammars; broadly speaking, heads can
be thought of as the words that decide the syntactic functionality of the collec-
tion of words (for fear of calling it a phrase) they indirectly dominate. The de-
pendency structure of a sentence is once more a tree, with words now as both
terminal and non-terminal nodes, glued together with dependency relations.
A dependency tree is unconstrained by adjacency and word order: edges can
fly over other edges; planarity is optionaly respected: an edge penetrating an-
other edge to enter a nested domain is called non projective. This perspective
is computationally appealing due to its simplicity and uniformity, as it allows
a dependency grammar to argue about languages with wildly diverging syn-
tactic and typological properties while remaining virtually unchanged. For the
exact same reasons, it can also be seen as concealing – it sacrifices any potential
of targeted analysis in the pedestal of universality. Finally, the semantically in-
clined might find a two-directional extension of dependency arcs enticing. In
that setup, the added direction (which needs not agree with that of syntactic
dominance) is devoted to semantic information flow, pointing from semantic
predicates1, to semantic arguments [Mel’cuk, 2003].

A dependency grammar that has gained significant traction over the last
decade is the framework of universal dependencies (UD) [de Marneffe et al.,
2021], claiming a broad collection of multi-lingual treebanks [Nivre et al., 2020]
and tools. In UD, words are usually assigned a label pulled from a rudimen-
tary set of part of speech tags and lexical identifiers; more importantly, de-
pendency relations are also labeled according to their grammatical function,
allowing the distinction of a words’ dependents according to the grammati-
cal role they fulfill. Grammatical roles are typologically and thematically in-
formed, and are inventorized with language universality as the prime goal.
This inventorization upholds no semantic promises, but is not inconsistent
with the aforementioned semantic view either. To obtain a semantic transcrip-
tion of the dependency tree, one needs only specify whether the semantic flow
of each grammatical role is co- or contra- directional to the edge’s syntactic
flow, i.e. whether the arc marks its dependent as a complement (where syntac-
tic head and semantic predicate coincide) or an adjunct (where the syntactic
head is the semantic argument to its syntactic dependent).2

Figure II.2 shows an example dependency parse. Unlike before, we can
not claim any semblance to the proofs that have occupied us thus far. At a first
glance, dependency grammars have little in common with categorial gram-
mars – structures are no longer binary nor made out of phrases, the axis of
grammatical functions is competely new, and there seems to be little there
reminiscent of the notions of induction and composition. Though on closer in-

1Apparently also an overloaded term. I will only ever use this in the strictly logical sense.
2UD explicitly refuses to make this claim, as complements and adjuncts are largely language-

particular syntactic constructs and a notorious point of debate [Haspelmath, 2014]. I would like
to believe I am not trespassing here, either – as will be made clearer in a bit, I employ the two
terms in a purely semantic fashion.

74 Dependency as Modality, Parsing as Permutation

he

PRON

beheld

VERB

the

DET

glittering

VERB

minarets

NOUN

of

ADP

the

DET

city

NOUN

nsubj

dobj

amod

det

prep
pobj

det

Figure II.2: A sample dependency parse in the universal dependencies format.

spection and armed with some goodwill, we can recover from some of these
divergences if we make a few concessions from both sides. We can start by
treating any collection of words rooted in the same ancestor in the depen-
dency tree as a constituent phrase, albeit possibly discontinuous – the result
will give us at least some partial overlap with the categorial directive. Gram-
matical functions can then be thought of as being implicit, having been inter-
nalized in their positioning within a functor. For instance we do intuitively
know that the Lambek transitive verb (NP\S)/NP requires an object NP to the
right and a subject NP to the left – marking them as such is perhaps redundant,
since the verbal meaning recipe places each syntactic argument into a dis-
tinct semantic slot. The binary bracketing structure is irrevocably lost, but this
loss can be deemed as inconsequential if we “flatten” functor-induced phrasal
boundaries by considering them only at these intermediary points where all of
their arguments (however many) have been applied. It is not much further we
can get with this mediatory role, though. No concession from the categorial
side would be able to justify the underspecification of higher-order phenom-
ena in a dependency tree, and no concession from the dependency side could
make peace with the omission of the concept of headedness in an applicative
natural deduction proof.

8 Modalities for Dependency Demarcation

In our new quest, we will seek to design a type logic that subsumes and rises
above both phrase structure grammars and dependency grammars. As we
saw in the previous section, the bar is not set particularly high for the first
kind; the Lambek calculus can already do more than well enough. The chal-
lenge then is to integrate the added values of a dependency grammar in a
type-theoretic framework. There’s two elements we are missing; distinguish-
ing between syntactic heads and syntactic/semantic predicates, and marking
words and phrases according to their grammatical roles within some wider
context.

Typing Dependency Structure 75

8.1 Two Dimensional Predicates

Categorial grammars are inherently and by design biased towards predicate
structures, primarily syntactic, but simultaneously also semantic (if one is to
believe the story of Section 5.1.4, no distinction can be made between the two).
Each phrase can be iteratively split apart into two subphrases (not necessar-
ily contiguous), where one provides a functor, and the other the argument
thereof. Note that this distinction does not preclude the possibility that the
argument itself has a functional type – no assumption is made on the form
of either subphrase’s type, other than the two being compatible. But what as-
sumes the role of the functor in a local domain needs not always be the syn-
tactic head of that domain. There’s a plethora of example cases. Quantifiers,
for one, are inarguably predicates over the objects they quantify, yet they ex-
actly obey the morphosyntactic characteristics prescribed by these objects (i.e.
grammatical gender, case, number, etc.), evidencing that the latter are in fact
the heads – a clear violation of any alignment we could ever hypothesize be-
tween functional predicateness and syntactic headedness. A similar argument
can be made for determiners and, more broadly speaking, any phrasal ele-
ment that takes functional precedence without being the syntactically promi-
nent part of its phrase, e.g. adjectival and adverbial modifiers.

This observation gives rise to a binary subcategorization of a binary pred-
icate structure; to establish some risky terminology, it is either:

i. an application of a head to its complement, or
ii. an application of an adjunct to its head

where the distinction between complement and adjunct is made solely on the
basis of their functional relation to the head.

The vanilla categorial vocabulary does not suffice to capture this extra di-
mension of function application – a problem also noticed by the intellectuals
of proto-categorial civilizations, as archeological excavations reveal. In an un-
published manuscript, Moortgat and Morrill [1991] propose a bidimensional
implicational type operator and corresponding residuation laws: the first bi-
nary dimension is reserved for the usual left- vs. right- application distinction,
whereas the second binary dimension specifies whether the head occurs to
the left or to the right; the result is four unique ways of building up an im-
plication. Congruent with the substructural trend of revealing structure that
was once hidden, this division brings forth a two-valued structural binder, al-
lowing the corresponding logic DNL to reason about headed binary trees. The
authors refrain from commiting to a specific linguistic application, but, trans-
lated into our terminology, their proposal can be schematically summarized
by Figure II.3. Further away from syntax, Hendriks [1997] employs DNL to
account for prosodic structures, where the head is assigned to intonationally
prominent elements.

76 Dependency as Modality, Parsing as Permutation

B

AB/l A

head complement

B

A\rBA

complement head

B

A\l BA

head adjunct

B

AB/rA

adjunct head

Figure II.3: The four implications of DNL.

8.2 Modal Dependents

As an alternative to introducing implicational (and by residuation, product)
variants, we can instead opt for the more fashionable modal decomposition
approach [Kurtonina and Moortgat, 1997]. The allows us to view a specialized
(here: head-aware) implicational variant as a composition of its uniform base
with a unary modality. The standard route would have use the modality to
mark the head – we will instead mark the dependent. More than a petty act
of rejection to establishment, this shall provide us with the means to further
differentiate dependents according to the exact grammatical slots they occupy
– after all, there’s quite a few different dependency labels, but only the one
head.

8.2.1 Complements vs. Adjuncts

Sticking to our risky agenda, the first distinction we need to make is that of
complements versus adjuncts. In the complement case, such a decomposition
would look as follows:

B/l A ≡ B/♢A (II.3)

A\rB ≡ ♢A\B (II.4)

The translation is straightforward: predicates in head position are functors
requiring the same arguments as they would before, except now under a di-
amond. In that sense, they assign diamonds to their complements by necessi-
tating an application of the ♢I rule of Figure I.16 prior to the function applica-
tion. Recalling the structural imprint of the rule, this results in an extra layer of
bracketing structure the delimits complement phrases and isolates them from

Typing Dependency Structure 77

their surroundings.
The adjunct case may at first glance seem slightly more obscure. Following

the directives of the previous paragraph, we need to mark the dependent –
this time a predicate in non head position – in a way such that its application
on its argument leaves a bracketing imprint on the structure of the former
instead of the latter. The solution manifests itself in the form of a box:

B/rA ≡ □(B/A) (II.5)

A\l B ≡ □(A\B) (II.6)

The translation is not much different: adjuncts are predicates wrapped by
a box. To reveal the pure function contained therein and allow a proof to
progress, we need to invoke the □E rule of Figure I.16, the effect being a brack-
eting structure that now delimits adjunct phrases.

There is symmetry between the above two cases. The task of imposing de-
pendency structure is always upon the functional predicate and its type. Head
predicates mark their complements, whereas adjunct predicates mark them-
selves; in either case, it is the dependent structure that gets the brackets. The
duality of predicate structure is thus mirrored in the innate distinction be-
tween function and argument of the applicative categorial backend, whereas
the duality of syntactic headedness is captured by the unary modalities; type-
checking in both dimensions.

8.2.2 Grammatical Functions

Let’s take this a bit further. Universal dependencies may make no adjunct
vs. complement distinction, but they go the extra mile of subspecifying de-
pendents according to the exact grammatical roles they play. Extending our
grammar logic accordingly is straightforward. Rather than have a single di-
amond and box, we can consider a usecase where modalities are a family of
unary residuals, i.e. a set of pairs, each labeled according to a single, unique
dependency label. The generalization is a multimodal type system consisting
of modal pairs:

{(♢d,□d) | d ∈ Deps} (II.7)

where Deps the full set of dependency labels made available to each specific in-
stantiation of the theory.1The edge case of Deps being a singleton set collapses
to the previous exposition (whereby explicit labeling is redundant).

Each instance of a labeled modality will now come with its own intro-
duction and elimination rules. Concomitantly, both the term calculus and the
bracketing structures are extended with multiple labels; the modal rewrites
and unary brackets of Section 4.1 are now differentiated on the basis of the

1Note that the label set can vary depending on the designer’s end goal; grammatical func-
tions is just one of the possibilities. The setup is also more than compatible with frame semantics,
where event-specific semantic structures (frames) are evoked by lexicalized syntactic heads to as-
sign semantic/thematic roles to their dependents (frame elements) [Fillmore, 1976].

78 Dependency as Modality, Parsing as Permutation

dependency label that induced them. Unlike before, the structural effect is not
a means to the end of structural reasoning, but the very purpose of the depen-
dency modalities – as such, they are not necessarily associated with any struc-
tural rules (even though nothing precludes the possibility – it might even be
reasonable to condition each dependency or combinations thereof to a unique
set of structural transformations, as we will see in a bit). Note, also, that the
residuation properties and normalization routines apply only between dia-
monds and boxes of the same label – no interaction between mismatched types
and terms is stipulated.

8.3 Inference with Dependency-Enhanced Types

Logical inference in the setup envisaged here is not dissimilar conceptually
to the standard type-logical pipeline of Section 5.1, but there’s some crucial
differences that require explication, plus a few critical gotchas to beware of.

8.3.1 Initial Lexical Adjustments

For starters, functors previously involved with simple applicative phenomena
will now need to abide to either of the type patterns below:

A, B := ♢dA\B | B/♢dA | □d(A\B) | □d(B/A) (II.8)

For these dependency-enhanced types to appear and take effect, the lexicon
needs to be adjusted accordingly.

It is the lexicon’s first duty then to discriminate between head and non-
head functors by decorating them or their arguments with the appropriate
modalities. An intransitive, for instance, would now be typed as ♢suNP\S –
to produce a sentence, the type demands to its left not just any noun phrase,
but rather one marked as a subject. The story is no different with more than
one complements – i.e. a transitive would be (♢suNP\S)/♢objNP, and so on.
A determiner, however, would be typed as □det(NP/N) – it recognizes the
right-adjacent noun as its head, but still takes functional precedence over it,
licensing the function application by dropping its determiner box. Similarly,
a prenominal modifier would be typed as □mod(NP/NP) – to apply to its un-
marked head, the type would need first liberate itself of its box, being a mod-
ifying adjunct.

Atomic type assignments will remain for the most part unchanged, as
these are necessarily complements (or heads of a singleton phrase, to be pedan-
tic) and their grammatical role cannot be decided a priori, anticipating a phrasal
head to enforce it instead. Plural nouns like the dolphins and whirlpools of Ta-
ble I.2, for instance, would still be typed as plain NPs – there’s no telling in
advance whether they will occur as subjects, direct objects or something else.
Exceptionally for words whose morphological characteristics already confine
them to a single possible grammatical role, we can consider an alternative

Typing Dependency Structure 79

typing that restricts them to exclusively that grammatical role. The straight-
forward thing to do would be to lexically mark them with a diamond – e.g. for
the nominative version of the third person singular personal pronoun, he, we
might assign the type ♢suNP, denoting it must necessarily occur in subject po-
sition. However, this would create a structural assymetry between a nominal
assigned the subject role via the ♢su I rule (inducing corresponding brackets)
versus the pronoun carrying the subject role (and thus remaining bracket-free).
To break this asymmetry, a better alternative would be to use a lexical assign-
ment that rests on the closure operator of (I.24) instead, i.e. □su♢suNP. Now for
the verbal head to find its subject-marked argument, the pronoun would need
to reveal its diamond via the □suE rule, independently bracketing itself in the
process, while excluding any potential for grammatical misuse.1

8.3.2 Dependencies & Structural Reasoning

Lambek vs. Lambek (vs. van Benthem) The next thing to consider is how
the inclusion of dependency modalities alters the structural core of each base
logic. In any case, modalities induce a multi-labeled unary bracketing struc-
ture, inpenetrable by the the structural rules the core logic assigns to its struc-
tural binder. In that sense, they act akin to the blocking modalities of Morrill
[1994]. For the non-associative NL, the result is trees of mixed but consistent
arity – our subclassing of functors in (II.8) means that each binary branch (im-
posed by a function-argument structure) will contain a normal branch that
corresponds to the local head phrase and a distinguished unary branch that
labels the non-head phrase – brackets and parentheses galore. Opting for the
more traditional associative base of L changes the scenery to one of shallower
and wider trees. Since the vanilla structure is now just a sequence, treeness
is imposed solely by the modal brackets; the result is a variadic but uniform
tree structure, where each subtree contains a single local head word and mul-
tiple dependent phrases, each of them in turn wrapped under a unary branch
(or simply just having its edge labeled, to make things easier to the eye). This
visual paradigm also applies to the even laxer LP – the difference being that
the yield of each local tree is recursively equivalent under bracket-preserving
permutation, i.e. commutativity now holds between constituent phrases (sub-
trees) rather than words (terminal nodes).

The above points hint to the fact that dependency modalities introduce
structural constraints that may (to some extent) obviate the need for a strict
structural binder. From the linguistic perspective, L seems to hit the sweet
spot – it has constituents live happily together in horizontal, non-binary clus-
ters set upon lush trees, with each constitutent given a role to fulfill. The sys-
tematic ordering of arguments according to their obliqueness order is made
redundant by their labeling; the positional explication of NL is replaced by
the denominational explication of the modal brackets. What’s more, headed-
ness is not proliferated among functionally incomplete constituents, i.e. each

1This is more of a serving suggestion – we won’t really be using it anywhere.

80 Dependency as Modality, Parsing as Permutation

he : □su♢su NP
lex

⟨he⟩su ⊢ ♢su NP
□suE

beheld : (♢su NP\S)/♢obj NP
lex

the : □det(NP/N)
lex

⟨the⟩det ⊢ NP/N
□detE

city : N
lex

⟨the⟩det, city ⊢ NP
/E

⟨⟨the⟩det, city⟩obj ⊢ ♢obj NP
♢obj I

beheld, ⟨⟨the⟩det, city⟩obj ⊢ ♢su NP\S
/E

⟨he⟩su, beheld, ⟨⟨the⟩det, city⟩obj ⊢ S
\E

(a) Simple applicative derivation in dependency-enhanced L.

S

beheldhe NP

the city

su obj

det

(b) Corresponding tree structure, read off the antecedent. As before, heavy edges de-
note heads, and double edges telescope unary branching (now labeled).

Figure II.4: The structural effect of dependency-enhanced functors.

complete phrase (read: one typed as a propositional constant) is flat among
its arguments, requiring only a single head and implicitly disallowing heads
from being phrases in themselves (in line with the mandates of dependency
grammars). The effect could be paralleled to a single argument functor that
takes the n-ary product of all its arguments in at once, giving rise to a corre-
sponding n-ary structural binder. Figure II.4 presents a simple first example
to illustrate the point.

How about LP though? We have so far dismissed the syntactic utility of
the logic as being overly permissive, presenting it as meaningful only from a
semantic perspective. With dependency brackets in the picture, the explosive
combinatorics of global commutatitivity are somewhat tamed; it is now per-
mitted only within the context of subtrees. In programming language terms,
this can be paralleled to a tree-shaped variable scoping strategy, where scopes
are identified by their names (unary labels) and those of their ancestors, and
the order of variable declaration is irrelevant, but the nestedness of embedded
trees is not. From a linguistic perspective, this would be akin to a natural lan-
guage that exhibits quasi-free local word order but makes heavy use of overt
morphological case marking to disambiguate.

This is still not very realistic, but presents an interesting opportunity. Rather
than commit to commutativity in general, we are invited to step into the cross-
roads between the two logics, employing L as the global base while inventor-

Typing Dependency Structure 81

izing commutative scrambling- and topicalization- like behaviors on the ba-
sis of structural postulates informed by dependency roles. Utilizing the now
explicit boundaries of dependency domains, we can repurpose the notion of
context to denote subtrees (despite being in an associative calculus!), obtain-
ing the means to formulate rules like:

ΓJ⟨∆, ⟨Φ⟩obj⟩dK ⊢ A

ΓJ⟨⟨Φ⟩obj, ∆⟩dK ⊢ A
obj-top

(II.9)

which can be read as saying that an object can be preposed within its local
d-labeled clause, if one such is nested within Γ.1 In principle, this could sim-
plify the categorial treatment of such phenomena: one can always start with
a canonical derivation, e.g. one where all arguments are in their expected po-
sitions, and proceed by shuffling them around given the structural rule in-
ventory. As a bonus, adorning these rules with non-void term rewrites would
allow them to upkeep their relevance for pragmatics. Exciting (or not) as this
might sound, it was only ever meant to incentivize the use of dependency
modalities; it won’t be something we will be pursuing presently, for we have
another kind of beast to face.

Crossing Boundaries The structural rule format hinted at would be capable
of dealing with the movement of phrases within a dependency domain, con-
ditionally relaxing the word order constraints of L under certain dependency
configurations. Yet it fails to provide any insights on how this could work in
the case of structures that are misplaced not in terms of linear order, but of
nestedness level. That is, beyond the standard question of word order, depen-
dency modalities import previously invisible structural brackets that can pose
a challenge when it comes to traversing along dependency domains – a chal-
lenge unrelated to the choice of implicational core. To make this clearer, let us
revisit the keystone achievement of the previous chapter, namely the deriva-
tion of the object-relative clause of Figure I.25a (the phrase in question is that
the eye may never behold, in case you were confident enough to skip the chapter).
Conforming to our routine, let’s first adapt some of the lexical assignments of
Table II.1 (and add a few new ones for good measure).

The base types for nouns N and noun phrases NP are unmarked, plain and
boring; let’s not speak of them any further. The first-order types of the de-
terminer DET, adjectival modifier ADJ/ and verbal types, ITV and TV, should
by now also be familiar. The higher-order types of the adverb and the modal
auxiliary, ADV and AUX, might, however, require some elucidation. Note, first,
that despite seemingly divergent, the two types are identical when stripped of
their modalities. This is perfectly in line with our agenda of revealing previ-

1In reality, we would need to mark complete clauses to remove the possibility of arbitrary
shuffling and accidental overgeneration, but this can be trivially accomplished by boxing the
phrasal end-result, e.g. ♢su NP\□cl S for an intransitive, where cl would mark a complete clause
and assume the role of d in (II.9).

82 Dependency as Modality, Parsing as Permutation

eye, city :: N

walls, twilight :: NP

high, sterile :: ADJ/ := □mod(NP/NP)
a, the :: DET := □det(NP/N)

reigned :: ITV := ♢suNP\S

behold :: TV := ITV/♢objNP

never :: ADV/ := □mod(ITV/ITV)
may :: AUX := ITV/♢vc ITV

Table II.1: Dependency-enhanced lovecraftian lexicon.

ously coalescent diversity. The negation never functions like an adverbial ad-
junct: it is an endomorphism of an intransitive phrase that marks itself as a
modifier in the process. The modal auxiliary may, on the other hand, heads
its local phrase by assigning to an intransitive dependent the role of a verbal
complement, vc.

Next, we need to turn our attention to the relativizer – let’s first address
the missing dependencies:

□mod(NP\NP)/♢body(S/♢objNP) (II.10)

The functor now states the following: it requires first a relative clause body,
namely a sentence missing an object-marked noun phrase in its rightmost
border, in order to produce a postnominal adjectival phrase, i.e. a modifying
adjunct.

Naively, we would assume that the absence of binary bracketing structure
in L would allow us direct access to the gap within the relative clause body,
counteracting the need for the control modalities of (I.35). But the gap is still
enclosed, except this time under layers of impenetrable dependency domains!
Seems like we need to reinstate control – both kinds of modalities must be
employed in tandem; although in truth, the two do not really constitute dis-
tinct kinds per se: they only differ insofar as their linguistic purposes do. Nev-
ertheless, it might be handy to make a notational distinction between them,
just for the sake of reading comprehension. From now on, we will use filled
symbols to denote control modalities (i.e. ones whose purposes are confined
to rebracketing and movement), and white symbols to denote dependency
modalities (i.e. ones whose purpose is linguistic annotation, and the brackets
of which we expect to see in the antecedent of the proof’s end yield). Even
when having a single control pair, assigning it an explicit label x is still useful,
since it will allow us to tell its brackets apart from the rest. In this regime, our
relativizer’s type assignment becomes:

that :: RELo := □mod(NP\NP)/♢body(S/qx■x♢objNP) (II.11)

which is faithful to both (II.10) and (I.35), as it conveys that the missing object

Typing Dependency Structure 83

ΓJ⟨∆, ⟨Θ⟩x, Φ⟩dK ⊢ A

ΓJ⟨∆, Φ⟩d, ⟨Θ⟩xK ⊢ A
extrq

(a) Controlled extraction rule.

Θ

∆, Φ

d x

extrq←−−−

ΦΘ∆

x

d

(b) Corresponding tree transformation.

Figure II.5: Controlled extraction in the dependency-bracketed setting.

is now movable.
Mobility, however, also means something different now. Taking inspira-

tion from the established structural vocabulary (see Figure I.23 if you need to
jog your memory), we need to concoct a novel structural rule: one that allows
the extraction of a nested substructure under the appropriate bracketing con-
ditions. The magical conconction is presented in Figure II.5a. Within arbitrary
context Γ, it looks for a d-labelled unary tree enclosing a x-labelled unary tree
Θ wrapped by sequences ∆ to the left and Φ to the right. There, it allows us
to pull the ∆ out, casting the outermost unary tree into a binary sequence and
assigning d to the concatenation of ∆ and Φ alone. If this makes little sense,
see Figure II.5b for a visual rendition. If still unclear, move your mental cursor
four sentences back (this one included) and try again.

Equipped with this missing bit of alchemical knowledge, we’re at long
last able to produce analyses for some less contrived linguistic examples; Fig-
ure II.6 presents the dependency-enhanced derivation we set out to deliver.
Before we move on, though, some important observations are in order. First,
the presentation makes an implicit quantification over the outer label, d – if
we were to be really pedantic, we’d need a unique instantiation of that rule for
each dependency (but not control!) modal label in the logic. Beyond a book-
keeping obligation, this parameterization can also be to our advantage: it al-
lows us to directly control which of the dependency domains allow extraction,
and which do not. On a less bureaucratic note, the contextual formulation of
the rule carries the usual problem of complicating syntactic equality check-
ing. In practice, we can employ a localized version, i.e. one where Γ is a flat

84 Dependency as Modality, Parsing as Permutation

that : RELo
lex

....
⟨⟨the⟩det, eye⟩su ⊢ ♢suNP

may : AUX
lex

never : ADV/
lex

⟨never⟩mod ⊢ ITV/ITV
□modE

behold : TV
lex

xi : ■x♢objNP
id

⟨xi⟩x ⊢ ♢objNP
■xE

behold, ⟨xi⟩x ⊢ ITV
/E

⟨never⟩mod, ⟨xi⟩x ⊢ ITV
/E

⟨⟨never⟩mod, behold, ⟨xi⟩x⟩vc ⊢ ♢vc ITV
♢vc I

⟨⟨never⟩mod, behold⟩vc, ⟨xi⟩x ⊢ ♢vc ITV
extrq

may, ⟨⟨never⟩mod, behold⟩vc, ⟨xi⟩x ⊢ ITV
/E

⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc, ⟨xi⟩x ⊢ S
\E

xj : qx■x♢objNP
id

⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc, xj ⊢ S
qxE

⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc ⊢ S/♢objNP
/I

⟨⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc⟩body ⊢ ♢body(S/♢objNP)
♢body I

that, ⟨⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc⟩body ⊢ □mod(NP\NP)
/E

Figure II.6: Dependency-enhanced adaptation of the proof of Figure I.25a, ex-
emplifying the interaction between dependency and control modalities.

context (i.e. a sequence with a hole), which means that extractions need to
be preemptively applied before every bracketing operation, rather than de-
ferred and done in bulk in the future. Finally, it is important to remember that
the rule is supplementary to (and not a substitute for) controlled associacitiv-
ity and/or commutativity: altering the linear order of substructures in (N)L
and/or their binary brackets in NL still calls for different structural rules with
possibly different control modalities that will need to coexist with the extrq
rule for structures to find their intended positions.

Ever higher order The example just inspected hides a crucial wisdom: vari-
able abstraction applies to variables – not complex structures thereof. Con-
trol modalities may impose transient bracketing structure upon hypotheses,
temporarily hindering their abstraction, but it is always retroactively redacted
with the ♢E rule (after all the necessary structural operations have taken ef-
fect). The bracketing imposed by dependency modalities, however, is built to
last, posing a potential roadblock to hypothetical reasoning and higher-order
types.

Hypothetical complements are relatively easy to tackle: they just come
packed with their diamonds at variable instantiation time. Excluding the pres-
ence of the irrelevant control box, this is exactly the strategy followed in the
example under scrutiny (see the id rule instantiating xi in Figure II.6). Upon
closer inspection, we can verify that this is in fact just the η normalized version
of hypothesizing a plain type, assigning it the desired dependency brackets
via the ♢I rule, and then performing a substitution of the bracketed variable
for a logical equivalent (wrapped under the necessary control brackets) via
the ♢E rule – consult Figure II.7 and contrast with Figure I.18 if unconvinced.

Hypothetical adjuncts are less forgiving. A hypothesized adjunct will seek
to apply itself to some phrasal head, which is impossible unless it first drops

Typing Dependency Structure 85

xk : NP
id

⟨xk⟩obj ⊢ ♢objNP
♢obj I

xi : ■x♢objNP
id

⟨xi⟩x ⊢ ♢objNP
■xE

⟨xi⟩x ⊢ ♢objNP
♢objE

η
≡ xi : ■x♢objNP

id

⟨xi⟩x ⊢ ♢objNP
■xE

Figure II.7: η long form of the ♢obj connective of hypothesis xi in Figure II.6.

its box. But in dropping its box, it becomes enclosed in structural dependency
brackets that prohibit its eventual abstraction. We will need to once more re-
sort to the ♢E rule to remove it, except this time it will be the interior combi-
nation of Figure I.19d that we are invoking, which is not subject to η contrac-
tion. To see this in action, let us once more consider an excerpt from our go-to
source: a city of high walls where sterile twilight reigned1. The relative adverb
where heads yet another a relative clause, where sterile twilight reigned, acting
as a postnominal modifier to the noun phrase a city of high walls. The rela-
tive clause differs to the ones so far inspected, in missing from its embedded
subordinate sterile twilight reigned not a complement, but an adjunct: a gap-
equivalent to the lexical there of Figure I.22e, except dependency-enhanced,
i.e.□mod(ITV\ITV) in shorthand. As Figure II.8a illustrates, the need for bracket
erasure necessitates prefixing the gap type with a residual diamond, steering
us towards our first ever fourth order type:

where :: RELloc := □mod(NP\NP)/♢body(S/(♢mod□mod(ITV\ITV)) (II.12)

This beast of a type plays the starring role in the derivation of Figure II.8;
it promises to provide a postnominal modifier, if presented with a (third or-
der) relative clause body, that being a sentence missing to its right a diamond-
marked (second order) postverbal modifier.

But why go through all this trouble of producing the dependency brackets
only to then immediately cancel them out? The alternative of hypothesizing
a plain functor without any dependency markings would be logically valid
but grammatically suboptimal and contrary to our agenda, as it would give
us no insights on what the dependency function of the gap is – the modali-
ties stay. Another, more pressing question is that of the compatibility between
hypothetical adjuncts and the control modality of the previous paragraph, i.e.
how could we deal with the nested gap in e.g. where sterile twilight may reign .
Fortunately, we need not worry: our previous treatment still holds with only
the most minor of adjustments. Same as before, we have to alter the typing of
the gap by prepending a boundary crossing permit, the interior pair qx■x. As
the modal chains are no longer η contractable, the gap will manifest as three
distinct variables, sequentially substituting one for another via two ♢E rules,
as shown in Figure II.9. The first substitution of xi for xj is responsible for re-
moving the mod brackets for x ones, allowing any applications of the extrq

1H.P. Lovecraft, Azathoth (1938). In Leaves (2).

86 Dependency as Modality, Parsing as Permutation

reigned : ITV
lex

xi : □mod(ITV\ITV)
id

⟨xi⟩mod ⊢ ITV\ITV
□modE

xj : ♢mod□mod(ITV\ITV)
id

xj ⊢ ITV\ITV
♢modE

reigned, xj ⊢ ITV
\E

(a) Structurally freeing a hypothesized adjunct...

where : RELloc
lex

sterile : ADJ/
lex

⟨sterile⟩mod ⊢ NP/NP
□modE

twilight : NP
lex

⟨sterile⟩mod, twilight ⊢ NP
/E

⟨⟨sterile⟩mod, twilight⟩su ⊢ ♢su NP
♢su I

(II.8a)

reigned, xj ⊢ ITV

⟨⟨sterile⟩mod, twilight⟩su, reigned, xj ⊢ S
\E

⟨⟨sterile⟩mod, twilight⟩su, reigned ⊢ S/(♢mod□mod(ITV\ITV))
/I

⟨⟨⟨sterile⟩mod, twilight⟩su, reigned⟩body ⊢ ♢body(S/(♢mod□mod(ITV\ITV)))
♢body I

where, ⟨⟨⟨sterile⟩mod, twilight⟩su, reigned⟩body ⊢ □mod(NP\NP)
/E

(b) ...to provide a gap in the higher-order argument of the relative adverb where.

Figure II.8: Deriving a locative relative clause.

rule in the telescoped subproof s. The bracketed variable will eventually be
positioned at the outermost branch of the antecedent tree, at which point it
can be substituted for xk, the “true” variable of the gap. Don’t give in to de-
spair; this is peak complexity – with these type patterns at our disposal we
should be able to tackle any linguistic phenomenon we might encounter from
this point on. Note, finally, that complement and adjunct gaps are not that
different to one another after all: they both mimic their corresponding lexical
assignment (a plain type or a boxed functor, respectively), except prepended
by a diamond of whichever dependency role they will assume and (if needed)
a structural extraction licensor.

8.4 Interfaces
Having completed our tour of dependency-decorated proofs, it is time for
respite and reflection. Let us take a moment to internalize where we started
from and where we are now.

8.4.1 Dependency Trees

Our first ambition was to provide categorial type logics with the means nec-
essary to argue about dependency relations, ideally subsuming dependency
trees within the logic’s antecedent structures. To claim our endeavour a suc-
cess, we need to actually show how these dependency trees can be extracted.

Typing Dependency Structure 87

xi : □mod(ITV\ITV)
id

⟨xi⟩mod ⊢ ITV\ITV
□modE

xj : ■x♢mod□mod(ITV\ITV)
id

⟨xj⟩x ⊢ ♢mod□mod(ITV\ITV)
■x E

⟨xj⟩x ⊢ ITV\ITV
♢modE

.... s

⟨Γ⟩d, ⟨xj⟩x ⊢ A xk : qx■x♢mod□mod(ITV\ITV)
id

⟨Γ⟩d, xk ⊢ A
qx E

...

Figure II.9: Schematic pattern for extracting a nested hypothetical adjunct.

Let’s begin with some trivial observations. In the domain of dependency
annotated proofs, endsequents will contain neither variables nor any con-
trol brackets. Collapsing any notion of structure imposed by the functional
core (i.e. drop constituency and word order from the builtin structural binder,
since dependency trees are agnostic to those), we end up with structures made
exclusively of constants (terminal nodes), multisets of structures (unordered
variadic branches) and dependency-enclosed structures (unary branches). This
typological description can be further refined by noticing that the non-zeroary
tree operators alternate in turns: there’s no chaining of unary brackets (each
phrase is only assigned at most one dependency role), nor a multiset of mul-
tisets (as the simplified structural binder is flat). Finally, consider that each
multiset will coincide with a dependency domain, containing exactly one (un-
marked) head constant (necessarily a word), some n adjuncts and some m
complements.

With these in mind, we arrive at the following (modulo permutation) in-
ductive definition of a dependency induced structure:

Γ := ⟨Γ0⟩d0 . . . ⟨Γn−1⟩dn−1︸ ︷︷ ︸
adjuncts

⟨Γn⟩dn . . . ⟨Γn+m−1⟩dn+m−1︸ ︷︷ ︸
complements

κ︸︷︷︸
head

(II.13)

Converting such a structure to a dependency tree akin to the one of Figure II.2
is pleasantly easy: just apply the function below to it (plug an invisible “root”
node and label to get things going).1

deptree :: Struct→ Head→ Deps→ Set[Arc]

deptree
(
⟨Γ0⟩d0 . . . ⟨Γn+m−1⟩dn+m−1 κ

)
root label =

{root label−−→ κ} ∪
n+m−1⋃

i=0
{deptree Γi κ di}

Figure II.10 shows the function’s yield applied to two of the section’s exam-

1For the more verbally inclined, we need to simply enter every dependency domain and
establish an arc from the local head to (the head of) each of its dependents.

88 Dependency as Modality, Parsing as Permutation

that the eye may never behold

body

sudet

vc

mod

(a) Dependency tree of Jthat, ⟨⟨⟨the⟩det, eye⟩su, may, ⟨⟨never⟩mod, behold⟩vc⟩bodyK.

where sterile twilight reigned

body

sumod

(b) Dependency tree of Jwhere, ⟨⟨⟨sterile⟩mod, twilight⟩su, reigned⟩bodyK.

Figure II.10: Trees extracted from the derivations of Figures II.6 (a) and II.8 (b).

ple derivations. Given a partition of Deps into adjuncts and complements, the
conversion can trivially be extended with the bidirectional dependency arcs
described in Section 7.2. Word order is also straightforward to capture, if we
just keep the structural order provided by a non-commutative calculus in-
tact. In any case, our efforts go to show that the general structure of a depen-
dency tree can easily be captured by a dependency-enhanced type logic using
the type assignment patterns discussed. Aligning the type logic to a specific
flavour of a dependency grammar was never our main intention, but should
be fairly easy to accomplish by reverse-engineering the annotational specifics
of the target: a task for future generations.

8.4.2 Semantics

The trees of Figure II.10 leave something to be desired: by backpedaling to-
wards dependency grammars, higher-order phenomena have been completely
dismissed – wasted are all our efforts to tame and manage the bracketing
structures of hypotheses. Perhaps importing residuated modalities just for the
sake of cracking some dull and flat dependency relations was an overkill after
all? The answer is no. Antecedent bracketing structures is but the most super-
ficial aspect of our grammar logic’s proofs – the function argument relations
of the implicational core are retained, and in fact coexist with the dependency
annotations (including higher-order ones) in the logic’s term calculus, which
we have been unjustly ignoring.

The far richer type and term structure of the syntactic calculus creates, in
turn, ample opportunity for the passage to semantics. We are of course still
presented with the cautious option of simply forgetting about dependencies,
retracting to the same dependency agnostic ILL we did earlier. But the radical
path would have us preserve dependency operators in the intermediate sta-

Typing Dependency Structure 89

tion of derivational semantics1, in hope of them findind downstream applica-
tions later on. A first merit would be the availability of richer type assignments
in the lexical semantics domain, where previously identical function types be-
come distinguishable by virtue of their modal decorations. There, syntactic
modalities can be translated to semantic operators, lifting the target signature
accordingly and allowing for a stronger syntax-semantics interface – as for
what these translations might be, quite a few reasonable paths are presented.
Monads make for a natural translation choice, both because of their affinity
with modalities [Kobayashi, 1997; Corfield, 2020] as well as their progres-
sively maturing adoption by the linguistics community [Asudeh and Gior-
golo, 2020]. Furthermore, dependents are delineated and identified by their
syntactic roles, allowing distinct semantic treatments, if so desired. Even in
the modest setting of a non-inflated translation, modalities can help tell which
of the (possibly many) combinations of semantic slots are occupied in a given
construction, allowing the correct compositional recipe to be retrieved from
the semantic lexicon, while still distinguishing between optional and neces-
sary ones [Asudeh et al., 2012]. In the edge case, they open the possibility
for a homomorphic translation that “forgets” parts of the implicational direc-
tives of the logic, relying instead on the source dependency markings for the
construction of its semantic terms.

9 Key References & Further Reading

The chapter has presented novel work, assembled and expanded from stream-
lined bits and pieces of earlier published drafts. The good news is you’re read-
ing the most extensive overview available at the time of writing. The bad news
is I don’t have much references for you – if it’s any consolation, there’s still two
more chapters to go. Of work not included in this chapter or the ones to come,
the one by Moortgat et al. [2023] has dependency modalities play a key role
in the annotation and generation of complex verb clusters with subtle seman-
tic dependencies, the recursive nature of which seems to break the omnipo-
tence attributed to neural language models. For a less avant-garde reading,
I’d like to draw your attention to this chapter’s historical roots, namely the
manuscript of Moortgat and Morrill [1991]. If unsated and craving for more
modalities-as-dependencies, you have the option of either writing something
yourself or waiting until someone else does.2

More broadly and outside their use as dependency markers, unary modal-
ities have long now been a tempting way to encode linguistic features – see
Heylen [1997] and Johnson [1999a,b], for instance. Further away from our
niche territories, the relation between dependency grammars and lexicalism is
extensively analyzed by Kuhlmann [2010], who asks (and answers) the ques-
tion of which formal grammars induce what kind of dependency structures.

1And thus necessarily also the extraction pair qx , ■x .
2Calling it now, next big development in Moortgat et al. [2051].

90 Dependency as Modality, Parsing as Permutation

On a relevant note, the slightly disheveled categorial dependency grammars
make for an attempt to provide a categorial treatment of dependency struc-
ture, where the arcs and their labels are in themselves the grammar’s base
types [Dekhtyar et al., 2015].

Chapter II Bibliography

A. Asudeh and G. Giorgolo. Enriched meanings: Natural language semantics with
category theory, volume 13. Oxford University Press, 2020.

A. Asudeh, G. Giorgolo, M. Butt, and T. H. King. Flexible composition for op-
tional and derived arguments. In Proceedings of the LFG12 Conference, pages
64–84, 2012.

J. W. Backus. The syntax and semantics of the proposed international alge-
braic language of the Zurich ACM-GAMM conference. In Proceedings of the
International Conference of Information Processing UNESCO Paris June, 1959.

N. Chomsky. Three models for the description of language. IRE Transactions
on information theory, 2(3):113–124, 1956.

D. Corfield. Modal homotopy type theory: The prospect of a new logic for philosophy.
Oxford University Press, 2020.

M. Dalrymple. Lexical functional grammar. Brill, 2001.

M.-C. de Marneffe, C. D. Manning, J. Nivre, and D. Zeman. Universal Depen-
dencies. Computational Linguistics, 47(2):255–308, 07 2021. ISSN 0891-2017.

M. Dekhtyar, A. Dikovsky, and B. Karlov. Categorial dependency grammars.
Theoretical Computer Science, 579:33–63, 2015.

C. J. Fillmore. Frame semantics and the nature of language. In Annals of the
New York Academy of Sciences: Conference on the Origin and Development of
Language and Speech, volume 280, pages 20–32, 1976.

H. Gaifman. Dependency systems and phrase-structure systems. Information
and control, 8(3):304–337, 1965.

G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag. Generalized phrase structure
grammar. Harvard University Press, 1985.

92 Dependency as Modality, Parsing as Permutation

M. Haspelmath. Arguments and adjuncts as language-particular syntactic cat-
egories and as comparative concepts. Linguistic Discovery, 12(2):3–11, 2014.

H. Hendriks. The logic of tune a proof-theoretic analysis of intonation. In
International Conference on Logical Aspects of Computational Linguistics, pages
132–159. Springer, 1997.

D. Heylen. Underspecification in type-logical grammars. In Selected Papers
from the Second International Conference on Logical Aspects of Computational
Linguistics, LACL ’97, page 180–199, Berlin, Heidelberg, 1997. Springer-
Verlag. ISBN 3540657517.

P. Jacobson. Phrase structure, grammatical relations, and discontinuous con-
stituents. In Discontinuous constituency, pages 27–69. Brill, 1987.

M. Johnson. Type-driven Semantic Interpretation and Feature Dependencies
in R-LFG. In Semantics and Syntax in Lexical Functional Grammar: The Resource
Logic Approach. The MIT Press, 03 1999a. ISBN 9780262271172. doi: 10.7551/
mitpress/6169.003.0012.

M. Johnson. A resource sensitive interpretation of lexical functional grammar.
Journal of Logic, Language and Information, 8(1):45–81, 1999b.

S. Kobayashi. Monad as modality. Theoretical Computer Science, 175(1):29–74,
1997.

M. Kuhlmann. Dependency Structures and Lexicalized Grammars: An Algebraic
Approach, volume 6270. Springer, 2010.

N. Kurtonina and M. Moortgat. Structural control. Specifying syntactic struc-
tures, pages 75–113, 1997.

I. A. Mel’cuk. Dependency syntax: theory and practice. State University of New
York Press, 1988.

I. A. Mel’cuk. Levels of dependency in linguistic description: Concepts and
problems. Dependency and Valency. An International Handbook of Contemporary
Research, 1:188–229, 2003.

M. Moortgat and G. Morrill. Heads and phrases: Type calculus for depen-
dency and constituent structure. Manuscript, Universiteit Utrecht, pages 429–
450, 1991.

M. Moortgat, K. Kogkalidis, and G. Wijnholds. Diamonds are forever: The-
oretical and empirical support for a dependency-enhanced type logic. In
R. Loukanova, P. LeFanu Lumsdaine, and R. Muskens, editors, Logic and Al-
gorithms in Computational Linguistics 2021 (LACompLing2021), volume 1081
of Studies in Computational Intelligence SCI. Springer, March 2023.

Chapter II Bibliography 93

G. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, 1994.

J. Nivre, M.-C. de Marneffe, F. Ginter, J. Hajič, C. D. Manning, S. Pyysalo,
S. Schuster, F. Tyers, and D. Zeman. Universal dependencies v2: An ev-
ergrowing multilingual treebank collection. arXiv preprint arXiv:2004.10643,
2020.

M. Pentus. Lambek grammars are context free. In [1993] Proceedings Eighth
Annual IEEE Symposium on Logic in Computer Science, pages 429–433. IEEE,
1993.

C. Pollard and I. A. Sag. Head-driven phrase structure grammar. University of
Chicago Press, 1994.

P. Sgall, E. Hajicová, E. Hajicová, J. Panevová, and J. Panevova. The meaning of
the sentence in its semantic and pragmatic aspects. Springer Science & Business
Media, 1986.

D. D. Sleator and D. Temperley. Parsing english with a link grammar. arXiv
preprint cmp-lg/9508004, 1995.

L. Tesnière. Elements of structural syntax. John Benjamins Publishing Company,
2015. Original publication date 1959.

CHAPTER III

Proof Extraction

A program that only lives on paper is not a program.

With our theorycrafting over, we have in our hands an uninstantiated de-
scriptive model of syntactic and semantic composition, promising to capture
dependency relations while keeping both its feet set firmly in type theory. To
ascertain the model’s utility without resorting to promises of theoretical uni-
versality, cognitive plausibility, linguistic intrinsicness and the like, we have
two tried and tested ways to proceed. The first is the way of the scholar, re-
quiring a rare combination of high intelligence and charisma with a pinch of
luck. It involves equal doses or profound thinking and aggressive campaign-
ing, stirred vigorously in hope of the torque becoming self-sustaining – at long
last, utility affirmed by popular approval. This path, sometimes called the sci-
entific method, is a rather involved and painstakingly slow process, a high
stakes gamble that only starts yielding profits in the long run. More befitting
the modern paradigm of the mobile, adaptive, multi-purpose researcher is the
alternative path, the way of the engineer. A shorter term investment, it re-
quires only the acquirable skills of endurance and stamina, and offers a recipe
that’s easier to follow: simply swing at it until it cracks. After a lot of obses-
sive iteration and self-correction (interchanged with the occasional feeling of
despair), (f)utility will sooner or later be affirmed by cold, hard numbers. We’ll
go for this one.

This choice has some methodological repercussions. Under more tranquil
circumstances, we’d wait for the theory to be disseminated, criticized, adapted,
error-corrected and returned to sender before finally moving on; it being a
theory of language, this would entail a thorough qualitative analysis of sev-
eral kinds of linguistic phenomena, coupled with a theoretical investigation

96 Dependency as Modality, Parsing as Permutation

of what it can or cannot adequately capture. We are however in a compressed
timeframe, forcing our hand into putting it straight to the test; the pragmatic
approach is then to try and directly align it with real-world linguistic data
at scale, and hope for the best. The process, called proof extraction, revolves
around “proving” some source corpus of syntactically annotated sentences
via the design and application of an algorithm tasked with translating the ex-
isting annotation format into derivations of the target grammar – in our case, a
grammar of dependency-enhanced compositional assembly. Proof extraction
serves a ternary purpose. One, it gives us access to an uncompromisingly real-
istic testbed upon which we can immediately inspect and iteratively finetune
the specifics of the grammar logic. Two, it fills in for a strict and impartial
external critic in providing a quantitative evaluation regime – at each point
in time, we are able to measure the proportion of source analyses (and corre-
sponding linguistic phenomena) the algorithm provides a (reasonable) output
for. And three, the end-yield of this process has merit of its own. As a derived
dataset, it is first a building block necessary for populating the computational
toolshed of the theory, but also a public resource for the world to do with as
they please.

10 Preliminaries

10.1 Dutch

For our linguistic inquiries, the focus will be on Dutch. Other than being the
language I was contractually obliged to conduct this research on, Dutch is
an interesting specimen, the idiosyncracies of which have in the past proven
quite a topic of debate for others, and a source of headaches for myself. I don’t
have any intention (or delusion of competence) to casually throw an overview
of the Dutch grammar here; I’m certain that interested parties will be able to
easily get their hands on some introductory guide way more adequate than
any I could have ever written.1 In any case, knowledge of Dutch or its gram-
mar is by no means a prerequisite to moving on2 – the framework we will
describe might be instantiated for Dutch (thus inheriting typological labels
and conventions typical to the language), but is actually language-agnostic;
it’s not a framework made for the language, but a framework applied to the lan-
guage. What could be of use, however, is the briefest of expositions to Dutch
word order.

Even though main clauses emanate a false sense of safety, coming off as
SVO at first glance, Dutch surface word order is SOV canonically, where ex-
ceptionally for matrix clauses the verb appears in the second position. The ef-
fect becomes apparent when employing a preverbal adverb – contrast (III.1a)

1An online version of the standard Dutch reference grammar can be found at https://e-ans.
ivdnt.org/ (in Dutch).

2Speaking from experience.

https://e-ans.ivdnt.org/
https://e-ans.ivdnt.org/

Proof Extraction 97

with (III.1b), where both the subject and its predicate complement follow the
verb in a VSO pattern.

(III.1) a. Frans
Frans

verkoop-t
sell-3SG

kaas.
cheese

‘Frans sells cheese.’
b. Morgen

tomorrow
verkoop-t
sell-3SG

Frans
Frans

kaas.
cheese

Subordinate sentences are unaffected by the V2 rule. As a corollary, the in-
finitives of (non-nested) verbal complements (III.2a) are pushed to the end of
their clause, as are the verbal heads of indirect questions (III.2b).

(III.2) a. Frans
Frans

wil
wants

koopman
merchant

worden.
become[INF]

‘Frans wants to be a merchant.’
b. Weet

know
je
you

wie
who

kaas
cheese

verkoop-t?
sell-3SG

‘Do you know who sells cheese?’

Interestingly, the language does not make an overt distinction between an
object- and a subject- relative pronoun; combined with the SOV word order,
and the absence of morphological case markings, the effect is that the two rel-
ative clause types end up having the exact same surface form when the gram-
matical gender of the antecedent noun and the non-gap embedded argument
are the same – contrast the two sentences (III.3) below, where the first one is
amenable to two different readings.

(III.3) a. het
the

geheim
secret[N]

dat
that

een
a

bos
forest[N]

verbergt
hides

i. ‘the secret that hides a forest’
ii. ‘the secret that a forest hides’

b. de
the

kerk
church[NN]

die
that[NN]

vuur
vuur[N]

opslokt
consumes

‘the church that fire consumes’

The SOV order means that the chaining of verbs requiring non-finite com-
plements inadvertently leads to verb clusters, i.e. collections of two or more
verbs situated within the dependent clause and adjacent to one another. Verb
clusters are characterized by their inability to accommodate non-verbal ma-
terial, and may follow a number of different word orders, which don’t nec-
essarily abide by the order of selectional dominance. The question of which
factors influence the grammaticality of word order variations is a hot potato
and a topic of active research for decades – to make matters worse, these fac-
tors tend to differ between regional variations of the language.1 What follows
are some simplified common observations.

1As a fun trivia, out of the 6 possible orderings of 3-verb clusters, 4 to 5 were found admissible
by Dutch speakers depending on the construction [Barbiers, 2005].

98 Dependency as Modality, Parsing as Permutation

For starters, bare infinitives usually follow their governor – but: this is
not necessarily the case for clusters of two verbs where the finite verb is a
modal. The first two below depict the canonical and “inverted” word orders;
the third example is ungrammaticaul due to the adjective naamloos interrupt-
ing the cluster.

(III.4) a. ...
....

waar
where

ik
I

naamloos
nameless

zal
will

rusten
rest[INF]

b. ...
...

waar
where

ik
I

naamloos
nameless

rusten
rest[INF]

zal
will

‘... where I will rest nameless’
c. * ... waar ik zal naamloos rusten

A similar phenomenon is observed in the passive voice and the perfect tense,
both of which are formed periphrastically using a past participle and the ap-
propriate auxiliary verb. There, the past participle may occur either to the left
or the right of the auxiliary, leading to either a German- or an English- like
construction.

(III.5) a. ...
...

omdat
because

ik
I

de
the

eend
duck

ge-zien
PTCP-see

heb
have-1SG

b. ...
...

omdat
because

ik
I

de
the

eend
duck

heb
have-1SG

ge-zien
PTCP-see

‘... because I have seen the duck’

This gets further complicated by the so-called IPP (Infinitivus Pro Participio)
effect, where a participle that selects for an infinitive changes to an infinitive
itself, creating a cluster in the process – whether this substitution is mandatory,
optional or altogether impossible is lexically decided [Augustinus, 2015].

(III.6) a. Ik
I

heb
have

de
the

eend
duck

ge-zien.
PTCP-see

‘I have seen the duck.’
b. Ik

I
heb
have

de
the

eend
duck

zien
see[INF]

vliegen.
fly[INF]

‘I have seen the duck fly.’
c. Ik

I
heb
have

de
the

eend
duck

een
a

nest
nest

zien
see[INF]

maken.
make[INF]

‘I have seen the duck make a nest.’

There’s of course a lot more to the story, but we will steer clear of the rabbit
hole. The matter is of more than typological interest, though – Dutch verb
clusters have been a favorite topic of debate for formal grammarians for a
while now, since their construction requires expressive capacity beyond what
a context-free grammar can offer, and thus putting an end to any delusion that

Proof Extraction 99

ik heb de eend een nest zien maken

nsubj

vc

obj

det vc

obj

det

Figure III.1: Crossing dependencies in the 2-verb cluster of Gloss III.6c.

human languages are context-free [Huybregts, 1984; Shieber, 1985, inter alia].1

The impenetrable nature of verb clusters means that verbs that partake in their
construction may often be forced to detach from their arguments, or, worse
yet, become stranded from them by the infixation of another verb in between
– in the dependency grammar paradigm, these discontinuities materialize as
non-projective (or cross-serial) dependencies – see Figure III.1 for an example.
Long story short, Dutch word order is a complex puzzle that is not to be trifled
with.

10.2 Parsing: Recognition vs. Discovery
Our journey has to start with some painful observations. A natural language
grammar is a rather complicated construct that extends beyond the reach of
compositional structure. Nominals come with a ton of morphosyntactic rules;
there’s no syntactic entity as simple and unmarked as the idealized NP we
have extensively utilized in earlier chapters. The erroneous ommission or ad-
dition of as much as an inflectional marking suffices to turn a phrase ungram-
matical. The same issue pesters verbal morphology – combining a verb with
its potential arguments requires solving a number of constraints relating to
number and person (let aside any notions of semantic compatibility). To see
these constraints solved on the type level is not out of the question [Heylen,
1997; Pollard, 2004, inter alia]; it is, however, a problem in its own right. But all
these concerns are trivial compared to the monumental intricacies laid down
by word order constraints. For a language like Dutch, devising the type as-
signments and structural rules that exactly allow the word permutations ad-
missible by the language is a tremendous undertaking that requires navigat-
ing a complex network of layered rules and exceptions, subject to regional and
historical variety.

That is not to say that such endeavours are without merit; a formalism that
presents itself as syntactic in nature yet fails to provide a general and trans-
parent account of morphosyntactic and word order constraints wouldn’t be
particularly honest. The above remarks bring forth, however, a question of pri-
orities, which puts us at a juncture point. We have on the one hand the option
to pursue the Lambekian holy grail: the design of a substructural type system,
the proof search over which should amount to a decision procedure capable of

1Or, depending on the reader, that Dutch is a human language.

100 Dependency as Modality, Parsing as Permutation

telling sentence and non-sentence apart. Put in practical terms, we’d settle for
nothing less than absolute alignment with the Dutch grammar; just enough
expressivity to ensure no overgeneration, no undergeneration and a perfect
resolution of any and all syntactic ambiguities. The other option is perhaps
more sober – depending on our end-goals, we can check our ambitions to a
more realistic level. A focus on sentence formation, for instance, would jus-
tify the morphological concessions we have already been silently making. But
since the focus here is on compositionality, we’re given the chance for a much
more radical leap: we can cut the knot by skipping word order altogether.

Now this might be met with some scepticism, but put down your pitch-
forks and let me explain. In the type-logical setup, we’d follow the schema
of Figure I.27: start from a strict syntactic logic, and then strip it down to
its bare essentials to cast it into a logic of derivational semantics (the bare
essentials in our case being linear implication and the dependency modali-
ties). With derivational semantics being itself the point of interest, why take
the hard route instead of just starting directly? This is somewhat akin to the
abstract categorial grammar operationalization of Figure I.28, which would
have us start from a tectogrammatic logic, and transition to phenogrammar
via a morphism (here left unimplemented). A perhaps less stretched opera-
tionalization would involve a two-stage inferential setup, the first stage be-
ing the phase of logical meaning assembly, followed by a higher-level phase
of structural reorganization and reordering (here we’ll call it quits immedi-
ately after the first). Put bluntly, this option allows us to sneak our way out of
having to reason about the non-compositional aspects of syntax.1 Obviously
this alters the scope of our endeavours. Before any regrettable accusations are
thrown, consider that we need not be apologetic for the elephant in the room,
namely overgeneration. LP♢,□ is not intended to be the logic you put in gen-
eration mode, and its proof theory is not Lambek’s decision process. Rather,
it is an adequately expressive formalism that can accommodate the duality of
function-argument structures and dependency annotations we set out to cap-
ture. The problem is more practical than theoretical: who is going to hand us
these deep syntactic proofs if not for the morphism that was promised? Suf-
fice it to say this requires adopting a new notion of parsing (still well under
the deductive paradigm): that of associating a well-formed input with the cor-
rect tectogrammatic analysis. How exactly this is to be done doesn’t need to
concern us for now – we’ll cross that bridge when we get to it, in Chapter IV.

10.3 Lassy

To facilitate the agenda just established, what we need next is a sizeable re-
source of syntactic annotations that are both high-quality and sufficiently com-
patible to our needs. Fortunately, the search is rather short – the only candidate
is also the perfect one: Lassy [van Noord et al., 2013].

1An atonement to the ghost of Montague, returned to claim his dues.

Proof Extraction 101

Lassy consists of two annotated corpora, containing sentences paired with
a single analysis. Analyses are provisioned by Alpino [van Noord, 2006], a
powerful parser that stands the test of time by combining a high quality hand-
crafted lexicon, a statistical feature disambiguation model and a sophisticated
collection of phrase formation rules based on the HPSG framework [Pollard
and Sag, 1994]. Alpino annotations are described as spanning three axes: a
hierarchical one, answering which words form a phrase, a relational one, an-
swering what the grammatical functions between words are, and a categorial
one, answering what the syntactic labels of each word and phrase are. Unlike
shallow dependency grammars, Alpino does not shy away from higher-order
phenomena: it serves annotations as dependency graphs rather than trees by
employing secondary edges to represent words that assume multiple syntactic
functions. Expanded into the equivalent tree by node duplication, the senten-
tial structure is visualized as a tree of nodes connected by named edges (one
incoming edge per node, except for the root which has none). In what follows,
I will occasionally abuse terminology and call an Alpino or Lassy graph a tree,
in reference to this expanded representation; it is important to remember this
is distinct from the shallow dependency trees inspected earlier in the context
of dependency grammars.

Nodes can be either material, representing words and phrases, or phantom,
representing elided constituents – every phantom node is indexically associ-
ated to a material one. Material nodes are assigned a syntactic category label,
either a lexical part of speech tag (in the case of a terminal node representing
a word) or a phrasal category (in the case of a non-terminal representing a
phrase).1 The label of a phantom node may be retrieved by inspecting its ma-
terial counterpart. Nodes can be told apart by their unique identifier, which
differs even among nodes sharing the same index (i.e. index ̸= identifier).
Word order has no bearing on the tree structure – the span of each material
node in the sentence is just an attribute of that node. A material phrasal node
connects to its constituents (themselves nodes of any kind) by virtue of di-
rected edges labeled with grammatical functions. Modulo some (supposedly)
exceptional cases, each phrasal node emits exactly one head-labeled edge, the
rest being a combination of complements and adjuncts. An example analysis
as provided by Lassy is shown in Figure III.2.

Of the two corpora only the smallest one is of real interest. Lassy Small
includes approximately 65 000 sentences, amassing a total of almost 1 million
words. It is a gold standard corpus, meaning its annotations have been manu-
ally checked, corrected and externally validated, with a reported 97.8% of sen-
tences correctly analyzed, and a 98.63% of tokens correctly tagged – neither

1Terminal nodes are in fact assigned tags from two distinct sets: a simplified one (denoted
pos) and an extended one (denoted postag). The latter in turns consist of a generic label (denoted
pt) and a set of label-specific morphological values. Consistent with our dismissal of morpholog-
ical constraints, we use pt in what follows, but this is by no means a hard constraint – a short
discussion will follow later.

102 Dependency as Modality, Parsing as Permutation

id: 0
cat: top

id: 1
cat: smain

--

id: 2
word: wordt

pt: ww

hd

id: 3
cat: ppart

vc

id: 4
cat: pp

mod

id: 9
word: hard

pt: adj

mod

id: 10
word: gewerkt

pt: ww

hd

id: 11
cat: conj

mod

id: 5
word: Op
pt: vz

hd

id: 6
cat: np

obj1

id: 7
word: dit
pt: vnw

det

id: 8
word: moment

pt: n

hd

id: 12
word: en
pt: vg

crd

id: 13
cat: pp

cnj

id: 16
cat: pp

cnj

id: 14
word: in
pt: vz

hd

id: 15
word: Jeruzalem

index: 1
pt: n

obj1

id: 17
word: rond

pt: vz

hd

id: 18
index: 1

obj1

WS-U-E-A-0000000013.p.37.s.1

Op dit moment wordt hard gewerkt in en rond Jeruzalem.
‘At the moment there is hard work being done in and around Jerusalem.’

Figure III.2: Example Lassy graph. Note the identification of nodes 15 and 18
by a common index, marking the double use of Jeruzalem as the direct object
of prepositioal phrases 13 and 16.

perfect, but both more than good enough for our present needs.1 Its larger
sibling favors quantity over quality – it is more than 500 times the size, but
an ill-fit for our endeavours, being the parser’s unmodified output (i.e. silver
standard). Table III.1 and Table III.2 present aggregated summaries of the syn-
tactic category tags and depedency labels found in Lassy Small, together with
their relative frequencies. A breakdown of the corpus’ contents is presented in
Table III.3.2

1For a detailed exposition of Lassy annotation guidelines, refer to http://www.let.rug.nl/
vannoord/Lassy/sa-man lassy.pdf (in Dutch).

2Sourced from http://nederbooms.ccl.kuleuven.be/eng/tags.

http://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
http://www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf
http://nederbooms.ccl.kuleuven.be/eng/tags

Proof Extraction 103

Tag Description Frequency (%) Assigned Type

Lassy Short POS Tags

adj Adjective 7.3 ADJ

bw Adverb 4.5 BW

let Punctuation 11.2 LET

lid Article 10.7 LID

n Noun 22.5 N

spec Special Token 3.5 NP

tsw Interjection <0.1 TSW

tw Numeral 2.4 TW

vg Conjunction 4.2 VG

vnw Pronoun 6.5 VNW

vz Preposition 13.7 VZ

ww Verb 13.2 WW

Lassy Phrasal Categories

advp Adverbial Phrase 0.6 ADV

ahi aan-het Infinitive <0.1 AHI

ap Adjectival Phrase 2.1 ADJP

cp Complementizer Phrase 3.3 CP

detp Determiner Phrase 0.2 DETP

inf Bare Infinitival Phrase 4.7 INF

np Noun Phrase 36.7 NP

oti om-te Infinitive 0.8 OTI

pp Prepositional Phrase 23.2 PP

ppart Past Participial Phrase 4.2 PPART

ppres Present Participial Phrase 0.1 PPRES

rel Relative Clause 1.9 REL

smain SVO Clause 4.7 Smain
ssub SOV Clause 0.8 Ssub
sv1 VSO Clause <0.1 Svi
svan van Clause <0.1 Svan

ti te Infinitive 1.8 TI

whq Main WH-Q 0.1 WHq
whrel Free Relative 0.2 WHrel
whsub Subordinate WH-Q 0.2 WHsub

du Discourse Unit 2.6 n/a
mwu Multiword Unit 5.9 –
conj Conjunct 5.7 –

Table III.1: Lassy POS tags and phrasal category labels, and corresponding
atomic types. The du category doesn’t make its way to the extracted proofs,
while mwu and conj don’t have their own type.

104 Dependency as Modality, Parsing as Permutation

Label Description Frequency (%) Modality

app Apposition 0.8 □app

body WH-question Body 0.1 ♢whbody

body Relative Clause Body 0.1 ♢relcl

body Complementizer body 2 ♢cmpbody

cnj Conjunct 4.3 ♢cnj

crd Coordinator 1.8 –
crd Second Element of Correlative <0.1 ♢cor

det Determiner 9.7 □det

dlink Discourse Link 0.2 n/a
dp Discourse Part 0.8 n/a
hd Phrasal Head 27.8 –
hdf Final Part of Circumposition <0.1 ♢hd f

ld Locative Complement 0.5 ♢ld

me Measure Complement 0.1 ♢me

mod Modifier 16.4 □mod

mwu Multiword Part 5.1 n/a
nucl Nuclear Clause 0.5 n/a

obcomp Comparison Complement 0.1 ♢obcomp

obj1 Direct Object 10.8 ♢obj1

obj2 Secondary Object 0.2 ♢obj2

pc Prepositional Complement 10.6 ♢pc

pobj1 Preliminary Direct Object <0.1 ♢pobj1

predc Predicative Complement 1.3 ♢predc

predm Predicative Modifier 0.1 □predm

sat Satellite 0.2 n/a
se Obligatory Reflexive Object 0.7 ♢se

su Subject 6.9 ♢su

sup Preliminary Subject <0.1 ♢sup

svp Separable Verbal Participle 0.7 ♢svp

vc Verbal Complement 2.8 ♢vc

tag Appendix 0.1 ♢tag

whd WH-question Head 0.1 –
rhd Relative Clause Head 0.1 –

Table III.2: Lassy dependency labels, and corresponding modalities. Grayed
out dependencies don’t make their way to the extracted proofs. Heady de-
pendencies don’t get a modality.

Proof Extraction 105

Treebank Contents Acronym # Sentences # Words

DPC Dutch Parallel Corpus dpc 11 716 193 029

Wikipedia Wikipedia Pages wiki 7 341 83 360

WR-P-E

E-magazines WR-P-E-C

14 420 232 631
Newsletters WR-P-E-E

Teletext Pages WR-P-E-H
Web Sites WR-P-E-I
Wikipedia WR-P-E-J

WR-P-P

Books WR-P-P-B

17 691 281 424

Brochures WR-P-P-C
Guides & Manuals WR-P-P-E

Legal Texts WR-P-P-F
Newspapers WR-P-P-G

Periodicals & Magazines WR-P-P-H
Policy Documents WR-P-P-I

Proceedings WR-P-P-J
Reports WR-P-P-K
Surveys WR-P-P-L

WS-U
Auto Cues WS-U-E-A

14 032 184 611News Scripts WS-U-T-A
Text for the Visually Impaired WS-U-T-B

Table III.3: Breakdown of Lassy Small contents.

106 Dependency as Modality, Parsing as Permutation

11 Æthel

The stage is set. We need to devise an algorithm that accepts trees like the
one of Figure III.2 and emits proofs of LP♢,□. Following our prior discussions,
some assumptions need to be met before we get to even contemplate our ap-
proach. First, we need a clear three-way partition of the set of dependency
labels, so that each dependency relation marks either a head, a complement
or an adjunct. Further, we require that each dependency domain has exactly
one head. Finally, we must ensure that higher-order phenomena reflected in
secondary edges (or phantom nodes) are homogeneous so that they can be
treated in a uniform way. Unfortunately, these requirements are not always
met; our first step is therefore to massage any rough edges with a series of
transformations aimed at (i) harmonizing the input trees with the target logic
and (ii) fixing inconsistent formattings and underspecified or otherwise in-
compatible annotations.

11.1 Taming Lassy

11.1.1 Edge Relabeling

A phrasal annotation canonically contains a single head, a collection of com-
plements (no more than one of each), and a collection of adjuncts (without any
restriction on their plurality), where verbal, nominal and sentential domains
differ in labels they may contain. Deciding whether a dependency edge sig-
nifies a head, a complement or an adjunct requires little effort on our part, as
the distinction has already been made. The Lassy annotation manual specifies
labels {hd, rhd, whd, cmp, crd, dlink} as heads of various kinds, {det, mod, app,
predm} as adjuncts, and {body, cnj, hdf, ld, me, obcomp, obj1, obj2, pc, pobj1, predc,
se, su, sup, svp, vc} as complements. This is not a full partition of the set of
dependency labels of Table III.2, as several items fall in neither of the above
bins – more on that in a second. First, we’ll take on the less severe problem of
standardizing the labels already categorized.

body, but what kind of? A minor problem appears in the reuse of the body
label in three different contexts: as the body of a wh-question, a relative clause,
or a complementizer. This conflation is perfectly reasonable from Lassy’s an-
gle: in all three constructions, the head specifies the dependency (being either
whd, rhd or cmp) and selects for a subordinate clause with a gap that is practi-
cally agnostic to its external context. This scheme backfires in our setup, due
to heads not carrying their own annotation but rather imposing one on their
complements – if we keep the body relation as is, the three different types of
head would be indistinguishable. Counteracting this is easy; we simply sub-
categorize the body label according to the label of its head, giving rise to labels
whbody, relcl and cmpbody. This doesn’t have any unintended consequences on

Proof Extraction 107

the interal structure and typing of the complement, as its contents still has no
premonition as to what diamond it will eventually be assigned.

det or mod? Lassy is occassionally inconsistent with the use of the deter-
miner det and modifier mod labels in the nominal domain, marking either as
the other in various contexts. Examples include marking indefinite, demon-
strative or possessive pronouns as modifiers, and, the other way around, mark-
ing numerals, names in genitive form, quantifiers and complex quantifying
phrases as determiners – but neither direction is strictly followed. These an-
notations can at times result in a phrase with multiple determiners. Despite
determiners not being heads, the presence of multiple of them makes it hard
to decide on a compositional structure as it poses the challenge of choosing
one as primary between them. To impose the restriction of a single determiner
per nominal domain and to standardize (some of the) inconsistencies, we uni-
formly cast the former to determiners and the latter to modifiers, using sim-
ple lexical filtering. This results in a unique determiner per phrase (resolving
constructions like geen enkel ‘no’, de beide ‘both’, etc.), and an elimination of
complex determiner phrases.

Nominal and Verbal Domains Lassy uses the label hd to refer to both the
head of a matrix clause and to the head of a noun phrase. To distinguish be-
tween the two, we relabel heads co-occurring with a determiner to np-head.
This has no effect on our extracted types and proofs but shall help us formu-
late the extraction algorithm in a more transparent way.

11.1.2 Non-Compositional Annotations

Despite its admittedly high quality, Lassy has not been built with an inherent
focus towards compositionality. This reflects in some not so uncommon excep-
tions to the canonical phrasal annotation that de facto necessitate some global
concessions and some local emergency measures, ranging from targeted trans-
formations in the best case, to occassionally just giving up on a sample in the
worst. The biggest problem that we are faced with right off the bat is the abun-
dance of general purpose annotation schemes to convey non-compositional
structures. These come in two flavours – discourse level annotations, and mul-
tiword phrases.

Discourse Level Annotations Discourse level annotations are materialized
by dependencies dlink, dpart, nucl and sat, used in a catch-all fashion in place
of an actual syntactic analysis. In the example of Figure III.3 the two sentences
are analyzed as “discourse parts” of a single “discourse unit” rather than ma-
trix clauses conjoined by the comma – with some goodwill we could let that
slide, but that same strategy is internally applied within the second sentence
(apparently a “discourse unit” rather than a sentence), thus avoiding a proper

108 Dependency as Modality, Parsing as Permutation

id: 0
cat: top

id: 1
word: ,
pt: let

--

id: 2
cat: du

--

id: 18
word: .
pt: let

--

id: 3
cat: smain

dp

id: 11
cat: du

dp

id: 4
cat: np

su

id: 9
word: was
pt: ww

hd

id: 10
word: voorbij

pt: adj

predc

id: 5
word: De
pt: lid

det

id: 6
cat: mwu

hd

id: 7
word: Eerste

pt: spec

mwp

id: 8
word: Wereldoorlog

pt: spec

mwp

id: 12
cat: np

dp

id: 15
cat: np

dp

id: 13
word: de
pt: lid

det

id: 14
word: wapenstilstand

pt: n

hd

id: 16
word: een
pt: lid

det

id: 17
word: feit

pt: n

hd

wiki-4941.p.4.s.2

De Eerste Wereldoorlog was voorbij, de wapenstilstand een feit.
‘The first world war was over, the armistice a fact.’

Figure III.3: Example Lassy graph showcasing non-compositional annota-
tions.

Proof Extraction 109

syntactic justification for the elided verb. Unfortunatey, there is no algorith-
mic way to mend these pretend annotations, in part due to their wildly gen-
eral use, but mostly due to the fact they give us nothing to work with. This
phenomenon is unpleasantly common; discourse level annotations sum up
to about 2% of the total dependency edges in the corpus, and are present in
some 11 700 samples, affecting a hard to ignore 18% of the dataset. In order
not to lose all the precious samples in their totality, we take the more conser-
vative approach of simply pruning the problematic edges rather than discard
the entire tree. The subtree underneath each cut is subsequently rooted as an
independent sample, sprouting an array of smaller samples from the larger
unusuable original; in the example under scrutiny, we end up with three sam-
ples rooted at nodes 3, 12 and 15. Albeit being a sensible solution in terms
of data preservation, this has the unavoidable downside of a priori breaking
the alignment between the source corpus and the collection of proofs to-be.
In order to facilitate some level of back-and-forth matching, the new samples
inherit the sample name of their origin and are distinguished between one
another by a suffix corresponding to the identifier of their root node.

The pruning might sound easy on paper but proves tricky in certain re-
gards. Lassy by default provides no annotations for punctuation symbols,
which are instead attached to a conventional “top” node with an unlabeled
edge. By truncating trees naively, we’d be dropping punctuation that might
be necessary for a phrase to remain grammatical or otherwise prove useful
in the provision of a proper derivation. Internal commas, for instance, could
be the key to constructing a conjunction, whereas final punctuation might be
crucial in deciding the phrasal type, motivating their reinstation. Including
internal and right-adjacent punctuation only, however, carries the risk of up-
holding only one end of circumfixing punctuations like parentheses or brack-
ets, accidentally turning a phrase ungrammatical. The heuristic solution is to
iteratively expand a truncated subtree by attaching any internal or peripheral
punctuation marks, excluding opening brackets from the right edge and clos-
ing brackets and sentence-final punctuation from the left edge. To homogenize
trees (truncated or otherwise), punctuations are displaced from the “top” node
to the top-most node that carries an actual syntactic category label – the latter
serves as the new tree’s root.

The next issue to address is the occasional disconnect between a phantom
node and its material counterpart as a result of pruning. To avoid trees with
floating nodes, we check whether phantoms in the pruned tree can access their
material counterparts. When that’s not the case, the phantom node is substi-
tuted by a copy of the material one, and, in the event of it being phrasal, the
entire tree that lies underneath it. The process is repeated (to circumvent the
possibility of adding a new floating node when fixing the first) until a fixpoint
is reached. The result is the possibile duplication of lingustic material among
different prunings (i.e. a subtree that occurred once in the original Lassy sam-
ple can sometimes be found in more than one of the processed samples).

110 Dependency as Modality, Parsing as Permutation

id: 10
cat: pp

id: 11
word: op
pt: vz

hd

id: 12
cat: mwu

obj1

id: 13
word: 9
pt: tw

mwp

id: 14
word: en
pt: vg

mwp

id: 15
word: 10
pt: tw

mwp

id: 16
word: maart

pt: n

mwp

(a) Before.

id: 10
cat: pp

id: 11
word: op
pt: vz

hd

id: 12
cat: np

obj1

id: 16
word: maart

pt: n

hd

id: 18
cat: cnj

mod

id: 13
word: 9
pt: tw

id: 14
word: en
pt: vg

id: 15
word: 10
pt: tw

cnj crd cnj

(b) After.

WR-P-P-I-0000000242.p.16.s.2 (excerpt)

...op 9 en 10 maart...
‘...on March 9 and 10...’

Figure III.4: Reannotating a date expression containing a conjunction.

Proof Extraction 111

Multiword Phrases Another common pain point is the prominence of mul-
tiword phrase annotations, indicated in Lassy by the mwu dependency. Multi-
word expressions are a pervasive pest from the shadowy realms between lex-
icon and syntax. They can be categorized as being either (i) morphosyntacti-
cally fixed or (partially) productive expressions that deviate from the expected
compositional meaning, or (ii) just compositional expressions that have an id-
iosyncratic frequency. In all but the first subcase and regardless of their seman-
tic use, they are not necessarily without internal structure. The criteria of what
constitutes a multiword phrase and what doesn’t are somewhat muddy, sub-
jective and not clearly motivated. The example of Figure III.3 claims that Eerste
Wereldoorlog ‘first world.war’ is one, for instance – eliciting the questions of
whether expressions like the third/current/last/next world war are also instances
of a multiword phrase, and, if so, where the line is drawn (if at all). Anyway,
multiword expressions are bad, but what’s really bad is how overindulgent
Lassy is with their use, which feels more like a free pass at disclaiming any re-
sponsibility of actually providing an analysis: a stunning 5.9% of all composite
phrases are labeled as being multiword expressions.

Multiword phrases are not an impassable roadblock; they can be tackled
by relaxing the lexicalist word-to-type restriction, i.e. allowing entries in the
lexical dictionary to be keyed by arbitrary strings rather than words. This is in-
deed the approach we’ll follow, but only after having salvaged however many
of the missing annotations as we can. Doing so is in our best interest: it will
reduce the lexicon’s load and provide us with a collection of annotations that
are easier to generalize from. Generating structure out of thin air is of course
impossible, but several existing patterns are amenable to an automatic rean-
notation.

A first filter can tell us whether a word is a numeral or measure by inspect-
ing its part of speech assignment. Two numerals separated by a coordinator
make for a complex numeral, in which case a new tree can be instantiated,
with the coordinator and the two numerals as its daughters; the first marked
as a coordinator, the other two as conjuncts. A numeral, complex or single-
ton, adjacent to a quantity denoting noun (like paar ‘pair’, honderd ‘hundred’,
duizend ‘thousand’, etc.), a unit of measurement (like kilo ‘kilogram’, eur ‘euro’,
etc.) is cast into a modifier, and the noun is cast into a head. In a similar vein,
a tiny parser is employed to analyze expressions of time and date; it follows
a binarization scheme that assigns headedness to the more general part of a
datetime expression (i.e. year over month over day), and analyzes the rest as
a modifier with internal structure; an example is presented in Figure III.4.

On the lexical side of things, some expressions tend to default to a multi-
word annotation despite not being one – clearly an artifact of Alpino’s rule-
based parser that was never corrected in the manual verification stage. These
are for the most part prepositional phrases (like ten noorden van ‘north of’, met
uitzondering van ‘except for’, etc.), which are caught and reanalyzed by hav-
ing the genitive-substitute van attach to the modified noun (as consistently
done otherwise throughout Lassy), which the remainder of the expression

112 Dependency as Modality, Parsing as Permutation

consumes as a direct object. Other, less severe, cases include the mislabeling of
nationality adjectives (like afrikaans ‘Afrikan’, europees ‘european’, etc.), which
are recast as modifiers of the noun they were merged with. For consistency,
punctuations originally analyzed as multiword parts (presumably so as not to
break phrasal contiguity) are instead pushed to the topmost root.

These minor changes suffice to cut down the frequency of multiword ex-
pressions to a more manageable 4.5% (an overall reduction of 25%). Unre-
solved expressions have their parts merged into a single node; the resulting
node gets a new syntactic label, that being the most common part of speech
tag of the merged units (with a bias towards n or np, if either is present in
the parts). The goal is to contain the effect of multiword annotations within
their own phrasal boundaries (i.e. to avoid functors higher in the tree from
selecting for MWU-typed arguments). In the case of a multiword phrase con-
sisting solely of phantom parts, the merged phrase also gets assigned an index
associating it to its material counterpart.

11.1.3 There Can Be Only One (Head)

Having dealt with structureless structures, the next thing to tackle are sub-
trees that fail to elect a single head, falling to civil war (when multiple nodes
compete for the role) or rising to anarchy (when all relinquish it). Here, we’ll
need to assume the interventive role of a self-appointed stabilizing force, and
take it upon ourselves to reinstate normalcy (read: we’ll assign a single head
of our own choice). The culprit behind both cases is always a conjunction,
canonically containing a number of conjuncts (labeled cnj) and a single coor-
dinator (labeled crd). Exceptionally, we may have an instance of a so-called
correlative conjunction, where two words jointly perform the role of the coor-
dinator (e.g. zowel ... als ‘as much ... as’, etc.). We resolve this by changing the
label of the second coordinator (in terms of left-to-right sentential precedence)
to cor (for correlative), which we will later treat as a complement. Otherwise
in the second case we have an arrangement of conjuncts with no coordina-
tor in between. In reality, the conjunction is licensed by a punctuation symbol
(usually a comma, but sometimes a dash or an ampersand), which, being a
punctuation, has flown under Lassy’s radar. We heuristically resolve this by
first locating any occurrence of a single punctuation infixed between headless
conjuncts, relocating it to its rightful place, and assigning it a crd label; see
Figure III.5 for an example.

11.1.4 Phrasal Restructuring

Other than the incompatibilities detailed so far, some Lassy annotations are
suboptimal for the target logic, in specifying a phrasal structure that we want
to treat differently than prescribed. Such cases are treated by automatically
adjusting the phrasal structure to one we are happier with. Since such ad-
justments involve removing or reorganizing subtrees and edges, we run the
risk of accidentally removing the material tree that grounds a set of phantom

Proof Extraction 113

id: 1
word: ,
pt: let

id: 2
cat: ppart

punct

id: 3
cat: conj

su

id: 10
cat: pp

predc

id: 13
word: geweest

pt: ww

hd

id: 14
word: .
pt: let

punct

id: 4
cat: np

cnj

id: 7
cat: np

cnj

id: 5
word: Alle
pt: vnw

det

id: 6
word: strijd

pt: n

hd

id: 8
word: alle
pt: vnw

det

id: 9
word: leed

pt: n

hd

id: 11
word: voor

pt: vz

hd

id: 12
word: niets
pt: vnw

obj1

(a) Before.

id: 1
word: ,
pt: let

id: 2
cat: ppart

id: 3
cat: conj

su

id: 10
cat: pp

predc

id: 13
word: geweest

pt: ww

hd

id: 14
word: .
pt: let

punct

crd

id: 4
cat: np

cnj

id: 7
cat: np

cnj

id: 5
word: Alle
pt: vnw

det

id: 6
word: strijd

pt: n

hd

id: 8
word: alle
pt: vnw

det

id: 9
word: leed

pt: n

hd

id: 11
word: voor

pt: vz

hd

id: 12
word: niets
pt: vnw

obj1

(b) After.

WR-P-E-I-0000050381.p.1.s.704(2)

Alle strijd, alle leed voor niets geweest.
‘All the struggle, all the suffering were for nothing.’

Figure III.5: Reannotating a headless conjunction.

114 Dependency as Modality, Parsing as Permutation

nodes sharing the same index. As a precautionary measure, we enforce the
convention of having the material tree appear as close to the root as possible.

(Mis)understood Arguments Lassy treats the non-finite verbal forms (par-
ticiples and infinitives) as verbal elements proper, selecting for all the argu-
ments their finite counterparts would. Obviously, participles used for the pas-
sive or the perfect and infinitives in verbal complements cannot possibly find
all these arguments, some being located in higher levels of the dependency
graph. To resolve this, Lassy opts for establishing phantom nodes coindexed
with the so-called understood argument; the more non-finites in the path be-
tween the one under scrutiny and the top level clause, the more phantom
nodes are inserted. Some of these nodes are of a syntactic quality: non-finite
forms of transitives used in passive constructions refer back to the auxiliary
subject as their object. This makes past participles consistent with their use
in the perfect, and infinitives consistent with their use in subordinate clauses
– we’ll let it slide. Others are purely semantic: both past participles and in-
finitives select for a subject (e.g. the “agent” of the action they denote), which
can be any of the main clause’s arguments. We are not happy with the latter,
since no syntactic item allows for the duplication of material they demand,
and they have no place in the compositional structure we seek to extract;
we thus invoke our moral right to cast them away.1 Concretely, we look for
any edge with a su label that points to a phantom node, such that any of its
non-immediate ancestors is a sentential clause with another outgoing su edge
pointing to a node of the same index. Edges caught in our web are deleted,
as are any nodes left floating; see Figure III.6 for an example. This transforma-
tion incurs a loss of semantic coindexing, which anyway is irrelevant to us: it’s
up to lexical semantics entries to decide what arguments they have, how their
slots are filled, and how these are propagated and updated down the sentence.
Other than this coindexing, it will soon be made apparent that no meaningful
function-argument structures are actually lost by this erasure.

Modifier Scope Unlike complements, adjuncts in Lassy are not limited to
one occurrence per unique label. In other words, they are attached in parallel
to the phrasal domain they are part of, rather than recursively paired in a
binary fashion to the node they modify or determine. We managed to cheat
our way around multiple determiners so as to avoid any conflicts of priority,
but the same lexical strategy does not apply to modifiers. Since Lassy abstains
from taking a stance on what the order of modifier attachment is, and sees
no distinction between modifying a phrase or its head, we are forced to by
and large adopt the same strategy. Exceptionally in the nominal domain, we
have the option of imposing structure based on word order alone. That is, we
can distinguish between a noun and a noun phrase modifier depending on

1Funnily, our recurring complaint with Lassy so far has been that it gives us too little. This
time around, it gives us too much.

Proof Extraction 115

id: 1
cat: smain

id: 2
word: kan
pt: ww

hd

id: 3
cat: np
index: 1

su

id: 6
cat: inf

vc

id: 13
word: .
pt: let

punct

id: 4
word: kostbare

pt: adj

mod

id: 5
word: tijd

pt: n

hd

id: 7
index: 1

su

id: 8
cat: ppart

vc

id: 12
word: worden

pt: ww

hd

id: 9
word: Hiermee

pt: bw

mod

id: 10
index: 1

obj1

id: 11
word: gewonnen

pt: ww

hd

(a) Before.

id: 1
cat: smain

id: 2
word: kan
pt: ww

hd

id: 3
cat: np
index: 1

su

id: 6
cat: inf

vc

id: 13
word: .
pt: let

punct

id: 4
word: kostbare

pt: adj

mod

id: 5
word: tijd

pt: n

hd

id: 8
cat: ppart

vc

id: 12
word: worden

pt: ww

hd

id: 9
word: Hiermee

pt: bw

mod

id: 10
index: 1

obj1

id: 11
word: gewonnen

pt: ww

hd

(b) After.

dpc-gaz-001006-nl-sen.p.52.s.4(1)

Hiermee kan kostbare tijd gewonnen worden.
‘Precious time can be won with this.’

Figure III.6: Removing the understood subject from an infinitival verbal com-
plement.

116 Dependency as Modality, Parsing as Permutation

id: 1
cat: smain

id: 2
word: Palestina

pt: n

su

id: 3
word: was
pt: ww

hd

id: 4
cat: np

predc

id: 8
word: .
pt: let

punct

id: 5
word: een
pt: lid

det

id: 6
word: apart

pt: adj

mod

id: 7
word: probleem

pt: n

np_head

(a) Before.

id: 1
cat: smain

id: 2
word: Palestina

pt: n

su

id: 3
word: was
pt: ww

hd

id: 4
cat: np

predc

id: 8
word: .
pt: let

punct

id: 5
word: een
pt: lid

det

id: 9
cat: n

np_head

id: 6
word: apart

pt: adj

id: 7
word: probleem

pt: n

mod np_head

(b) After.

WR-P-E-I-0000051928.p.1.s.140(1)

Palestina was een apart probleem.
‘Palestine was a separate problem.’

Figure III.7: Inserting an intermediate layer for nominal modification.

Proof Extraction 117

where the modifier is located: a modifier that occurs before the determiner
must modify the entire phrase, whereas a modifier that occurs between the
determiner and the head noun must modify the noun alone; see Figure III.7
for an example. This simple heuristic is as as far as we can get, but it will
help homogenize our extracted proofs and types by (i) aligning dominance
hierarchy and word order and (ii) alleviating any unecessary typing tension
between NP and N modifiers.

Ellided Constituents Other than non-finite verbal arguments, shared index-
ing is primarily employed by Lassy to indicate an omission of linguistic ma-
terial in ellipses. The scheme Lassy employs presents the material version of a
“shared” tree (be it a deep structure or a singleton node) in the first conjunct
daughter of an elliptical conjunction, and a phantom copy of it in each sub-
sequent sister. We alter this by pushing the material node to the top-level of
the conjunction1 (i.e. as a sibling to all conjuncts), and substituting the gap left
behind by a new phantom node of the appropriate index. This will facilitate
the easier typing of conjunctions later on.

Unary Pipes The movements and erasures performed can sometimes lead
to “pipes” of unary trees. Awkward as these might be, they pose no issue to
the extraction algorithm, provided they consist solely of hd labeled edges. We
keep them as is so as to avoid the tedious and error-prone work of unecess-
sarily reindexing nodes.

Labelless Conjunctions The conj label, used as an umbrella category to clas-
sify all conjunctions, carries the same risk as the mwu label, namely of pollut-
ing the functional type assignments of phrases outside the conjunction itself
with a generic, multi-purpose argument type. We resolve this exactly like be-
fore, namely by conducting a majority voting over the categories of all con-
junct siblings and propagating the elected category upwards to the conjunc-
tion node, prioritizing noun phrases over nouns over everything else in or-
derto account for nominalization.

Raising Nouns Bare nouns are assigned the n part of speech regardless of
whether they need (or occur with) a determiner to occupy a verbal argument
position. To circumvent (to the extent possible) a combinatorial explosion of
meaningless N and NP argument variations, we alter the part of speech assign-
ment of n nodes that are not roofed under a np from the former to the latter.
As we will soon see, this will alter the type assignment of these nodes, in anal-
ogy to an implicit and contextual lexicalization of an explicit noun raising rule
turning N to NP.

1In the case of nested conjunctions, we stop at the first node assigned the conj syntactic cate-
gory that is an ancestor of all phantom nodes of the same index and dependency.

118 Dependency as Modality, Parsing as Permutation

Assertions Prior to sending the transformed tree on its way, we make some
basic checks of its structural integrity; we assert first of all it is indeed a tree (all
nodes but the root have one incoming edge, nodes are all connected), that ev-
ery phantom node has a material counterpart, and that no phantom nodes are
labeled as multiword parts (as these would be humanly impossible to type).

11.2 Proving Lassy

With our transformations in place, the subdued corpus should be ripe for our
proof extraction algorithm.

11.2.1 Proof Charming

The extraction is built around a tiny domain-specific language, written in
Python and allowing one to formulate, represent, transform and traverse valid
proofs of LP♢,□. By invoking the language while traversing the dependency
tree of a Lassy sample, the extraction algorithm dynamically constructs a nat-
ural deduction proof, translating tree patterns into meta-theoretical proof op-
erations. Internalizing the syntactic validity assertions of LP♢,□ is a costly pro-
cedure, both in terms of processing overhead and of maintainance effort re-
quired, especially considering how unconducive Python is to formal rigor. On
the other hand, it serves to eliminate the need for asynchronously interfacing
with some external checker, and provides a formal guarantee that whatever
the extraction algorithm produces is correct by construction: any syntactic mis-
steps will be caught on the spot and raise an exception. As a bonus, the system
can (and will) find use outside the scope of the extraction, as a representational
intermediary for parsing and proof representation. Detailing the specifics be-
hind the implementation shouldn’t be our main concern here; it suffices to
know it exists and runs as a constant safety belt in all that follows. If for what-
ever reason you enjoy watching people try to beat types into Python, you can
take at a look at Appendix 1 (not for the faint of heart).

11.2.2 Parameters

We start by declaring our basic necessities. First, a translation table (or func-
tion) that maps part of speech tags and syntactic category labels to types, used
to provide non-contextual type assignments to lexical nodes and phrases. The
translation table currently in use is depicted in Table III.1; it maps strictly to
atomic types and takes most of the categorial labels at face value, mapping
each of them to a unique image1. Exceptionally, the spec tag is cast into NP,
as the tag is (inconsistently) used as a generic annotation for places, persons,
events and the like. The codomain of the translation is in our case coincident
with our logic’s set of atomic formulas, Prop0. As hinted at earlier, the extrac-
tion is parametric to this translation: the domain can be any of the sets of lexi-

1It basically just converts italics to smallcaps.

Proof Extraction 119

cal tags Lassy provides access to, and the codomain is by no means restricted
to atomic types. This allows an easy adaptation to morpologically informed
types, or a transition to an expanded theory (e.g. one that includes subtyping,
additional axes of modal decorations, etc.). In principle, this can also allow a
re-incorporation of the semantic subjects of non-finite verbal forms, but doing
so would not amount to much: as promised earlier, these are already triv-
ially recoverable by a simple morphism (readily applicable on the extracted
proofs) that sends non-finite types (e.g. PPART) to the desired complex types
(e.g. ♢suNP⊸PPART); immediate return on investment for taking source labels
at face value. In any case, the translation induces a function that naively tells
us for each node what type the translation table prescribes to its part of speech
tag (if lexical), syntactic category (if phrasal) or the corresponding translations
of its material counterpart (if phantom).

Then, we need an equivalence relation on the set of dependencies so as
to partition it into heads, adjuncts and complements – each non-head depen-
dency is translated into a modal label, the union of which (together with the
extraction modality) forming the set of modalities Deps. For the set of depen-
dencies, we also need a strict partial order, serving to impose a canonical or-
dering of the arguments of a multi-argument functor. With this, we avoid the
responsibility of having to explicitly argue about an equivalence between ar-
gument order variations of the same head function: each complement will
have a distinct modal decoration that decides how strongly it is attracted
to the end result, yielding a canonical form for all types we’d be faced with
(given the uniqueness of complements restriction). This is reminiscent of the
notion of a obliqueness hierarchy [Dowty, 1982], which we can in fact use to pro-
duce some linguistically sensible types. From more to least oblique, we have:
svp>obcomp>vc>me>ld>hdf>pc>se>obj2>predc>obj1 >pobj1>su>sup.

11.2.3 Tree Patterns

The algorithm takes the form of a proof assignment function, responsible for
casting a local tree structure into a corresponding natural deduction proof.
The function is recursively called in a top-down fashion, its original input
being the complete dependency tree and its endpoints being terminal nodes.
Proofs assigned to lexical nodes will correspond to lexical type assignments,
whereas proofs assigned to phantom nodes will be variable instantiations. In-
termediate returns of the top-level function call will be the “partial” proofs of
the corresponding subtrees. To apply the appropriate operation at each slice
of the tree, the algorithm distinguishes between a number of structures on the
basis of the outgoing dependencies present. Context may be propagated from
a local layer to the layer underneath by providing the dependency label of the
edge that led to the current tree, and (optionally) a type hint. In mathy font,
this would look something like:

prove :: Tree→ Type? → Deps? → Proof

120 Dependency as Modality, Parsing as Permutation

In the paragraphs to follow, we will inspect the tree structures most commonly
encountered and discuss their treatment in high level terms. For ease of com-
munication, we will trace the algorithm in reverse, going from simpler con-
structions to more complex ones. Despite building proofs, we will at times
use notation or terminology commonly reserved for terms/programs when
both convenient and applicable, e.g. a variable will denote a proof containing
a single id rule, and applying a proof to a proof will mean deriving a more
complex proof via modus ponens – do not be startled by this and remember
your Curry-Howard.

Terminal Nodes Terminal nodes are easy-peasy. There’s only three ques-
tions we have to ask, namely “do we have a type hint?”, “is the node a phan-
tom?” and “was there a dependency label that got us here and, if so, was it
either an adjunct or a complement?”. Ok, this is actually four questions but
nonetheless. Any proof assignment we cook up must be uniquely identifiable
with the node; we will use the node’s identifier as the subscript of the instan-
tiated variable or constant (we will from now on use indexing to tell constants
apart, as strings do not make for trustworthy identifiers, i.e. ci for constant i).

If we do have a type hint, we just return a new constant (if not a phantom)
or variable (if phantom) of the hinted type. If we do not have a type hint, we
must first map the syntactic category label of the node under scrutiny (or its
material counterpart, if phantom) into a type using our translation table. If the
node was lexical, we are done – we need to just instantiate the type with the
lex rule. If it was a phantom, we must recall our discussion in Section 8.3.21

and check whether a modality needs to be added – a diamond (if we got here
through a complement marking dependency), or a box (an adjunct marking
one). If no label was present, or it was a heady one, we are to stick with the
plain type. Either way, the type gets instantiated with the id rule.

Non-Terminal Trees In any non-terminal domain, we must first decide on
the type of the current phrase. If a type hint was passed from above, we have
no option other than to obey it. If no hint was passed, we will translate the
phrasal category of the current root into the appropriate top type.

Matrix Clauses A simple verbal domain consists of a single head, some com-
plements and (possibly) some adjuncts – we’ll arrange them in corresponding
bins, with complements sorted by their obliqueness hierarchy and adjuncts
sorted by their order of appearance in the sentence. First, we’ll call prove on
each argument tree, passing its corresponding dependency edge and no type
hint as arguments. Each proof that does not correspond to an instance of the
id rule, we will apply a diamond introduction over, to enforce the appropri-
ate complement dependency (hypotheses are excluded due to already being of
the correct diamond type). By isolating the result types of the proofs extracted

1Hypotheses come prepackaged with their modalities – you’re welcome.

Proof Extraction 121

id: 1
cat: smain

type: SMAIN

id: 2
cat: np
index: 1
type: NP

su

id: 7
word: is
pt: ww

type: ◇vc(WW)⟶◇su(NP)⟶SMAIN

hd

id: 10
word: afgeleid

pt: ww
type: WW

vc

id: 11
word: .
pt: let

type: PUNCT

punct

id: 3
cat: detp

type: □mod(NP⟶NP)

mod

id: 6
word: andere

pt: adj
type: NP

hd

id: 4
word: Al
pt: vnw

type: □mod((□mod(NP⟶NP))⟶□mod(NP⟶NP))

mod

id: 5
word: het
pt: lid

type: □mod(NP⟶NP)

hd

(a) Type-annotated sample.

c7 : ♢vcWW⊸ ♢suNP⊸ Smain
lex

c10 : WW
lex

⟨c10⟩vc ⊢ ♢vcWW
♢vc I

c7, ⟨c10⟩vc ⊢ ♢suNP⊸ Smain
⊸E

c4 : □mod(□mod(NP⊸ NP)⊸ □mod(NP⊸ NP))
lex

⟨c4⟩mod ⊢ □mod(NP⊸ NP)⊸ □mod(NP⊸ NP)
□modE

c5 : □mod(NP⊸ NP)
lex

⟨c4⟩mod, c5 ⊢ □mod(NP⊸ NP)
⊸E

⟨⟨c4⟩mod, c5⟩mod ⊢ NP⊸ NP
□modE

c6 : NP
lex

⟨⟨c4⟩mod, c5⟩mod, c6 ⊢ NP
⊸E

⟨⟨⟨c4⟩mod, c5⟩mod, c6⟩su ⊢ ♢suNP
♢su I

c7, ⟨c10⟩vc, ⟨⟨⟨c4⟩mod, c5⟩mod, c6⟩su ⊢ Smain
⊸E

(b) Assigned proof (unprocessed).

WR-P-E-I-0000041235.p.1.s.123(1)

Al het andere is afgeleid.
‘All the rest is derivative.’
c7 △vcc10 △su(▼mod(▼modc4 c5) c6)

Figure III.8: Proving a simple finite clause.

122 Dependency as Modality, Parsing as Permutation

this way, we can infer the type of the phrasal head. We can thefore call prove on
the head tree, passing no corresponding dependency edge, but type hinting it
as the curried function from the sequentialized arguments to the top type. In
a dual fashion, we can call prove on each adjunct tree, type hinting it as the
endomorphism of the top type, enclosed under a box of the corresponding
dependency label. With this and that, we now have proofs for each subtree
underneath us – what remains to be done is fusing these proofs together. The
way to go is simple: we need to first left fold the head’s proof against the com-
plements’ proofs, and then apply the function composition of the “unboxed”
adjuncts’ proofs onto the result (unbox literally meaning using the box elim-
ination rule to reveal the endomorphism enclosed within). Let’s reiterate this
for clarity. Each step of the initial fold will produce a “shorter” type, and, by
the time we run out of complements, the result’s type will coincide with the
top type. Each unboxed adjunct will be a function from the top type to itself –
their n-ary function composition will then still be the of the same type, mean-
ing it can be directly applied to our intermediate result. At this point, we have
used each tree below exactly once (adherent to linearity), and we have pro-
duced a proof of the type we were asked to (or the tree prescribed), meaning
we’re good to go. Exceptionally to the above, nodes assigned the punct tag are
given a plain PUNCT type that does not partake in the proof.

This simple setup already suffices to cover quite a lot of trees with simple
applicative phenomena, including higher-order modifiers like in the example
of Figure III.8. There, nodes 1, 2 and 10 obtain types Smain, NP and WW by sim-
ple translation, and 7 obtains the type ♢vcWW⊸♢suNP⊸Smain, having 10 and
2 as complements (adorned with ♢vc and ♢su diamonds respectively) and 1 as
the result. Node 2 forces the type □mod(NP⊸NP) to node 3 (as an adjunct with
the mod label), in turn forcing the type □mod(□mod(NP⊸NP)⊸□mod(NP⊸NP))
to node 4 for the exact same reason. Nodes 5 and 6 inherit the types of their
mothers (3 and 2), having no complements. Within each domain, heads apply
to their arguments and adjuncts drop their boxes to apply to the result.

Subordinate Clauses & Verbal Complements Now, if you have a sneaking
suspicion that this looks oddly easy, you’re right. We have not yet made any
attempt to cover cases of hypothetical reasoning triggered by relative clauses,
wh-questions and passive constructions. The hypotheses in such phenomena
have already been established by the phantom nodes underlying them – all
we need to do is find out when to withdraw them. The criterion we’ll fol-
low applies to the proofs assigned to phrasal complements, and inspects the
variables contained therein. Variables and nodes are in a one-to-one relation,
owing to their common naming scheme; from a variable, we can refer to its
node, and from a node we can extract its index, inducing a many-to-one vari-
able to index relation. Any variable that maps to an index coinciding with
that of the phrasal head (for subordinate clauses), the phrasal subject (for pas-
sives), or the phrasal subject of any ancestor phrase (for passives nested under
auxiliaries), the variable is abstracted over. The complement then becomes a

Proof Extraction 123

id: 3
cat: np
type: NP

id: 4
word: Auto's

pt: n
type: NP

hd

id: 5
cat: rel

type: □mod(NP⟶NP)

mod

id: 6
word: die
index: 1
pt: vnw

type: (◇relcl(◇su(VNW)⟶SSUB))⟶□mod(NP⟶NP)

rhd

id: 7
cat: ssub

type: SSUB

relcl

id: 8
index: 1

type: ◇su(VNW)

su

id: 9
word: niet
pt: bw

type: □mod(SSUB⟶SSUB)

mod

id: 10
word: starten

pt: ww
type: ◇su(VNW)⟶SSUB

hd

c6 : ♢relcl(♢suVNW⊸Ssub)⊸□mod(NP⊸NP)
lex

c9 : □mod(Ssub⊸Ssub)
lex

⟨c9⟩mod
□modE

c10 : ♢suVNW⊸Ssub
lex

x8 : ♢suVNW
id

c10, x8 ⊢ Ssub
⊸E

⟨c9⟩mod, c10, x8 ⊢ Ssub
⊸E

⟨c9⟩mod, c10 ⊢ ♢suVNW⊸Ssub
⊸I

⟨⟨c9⟩mod, c10⟩relcl ⊢ ♢relcl(♢suVNW⊸Ssub)
♢relcl I

c6, ⟨⟨c9⟩mod, c10⟩relcl ⊢ □mod(NP⊸NP)
⊸E

⟨c6, ⟨⟨c9⟩mod, c10⟩relcl⟩mod ⊢ (NP⊸NP)
□modE

c4 : NP
lex

⟨c6, ⟨⟨c9⟩mod, c10⟩relcl⟩mod, c4 ⊢ NP
⊸E

WS-U-E-A-0000000016.p.37.s.1(3)

Auto’s die niet starten.
‘Cars that don’t start.’
▼mod(c6 △relcl((λx8.▼modc9 (c10 x8)))) c4

Figure III.9: Abstracting over a relative clause gap.

124 Dependency as Modality, Parsing as Permutation

functional type, before the diamond introduction rule is applied. This forces
the head to attain a higher-order type that licenses the hypothetical argument.
Figure III.9 presents a concrete example: head node 6 carries index 1 and looks
for its complement in node 7. But node 7 contains x8, and node 8 has index 1 –
therefore, we must abstract the proof of node 7 over x8 before continuing with
assigning it a diamond.

Horrors from the Deep But can we really be certain that the abstraction is in-
deed possible? Recalling once more our discussion from Section 8.3.21, there’s
a very real risk we might end up getting locked out of our hypotheses when
these are adjuncts, deeply nested, or both. In the first case, we need to repro-
duce our strategy from Figure II.8. To do so, we need the tiniest of adaptations
to our “unbox-and-apply” scheme from earlier on – when the adjunct that was
unboxed happens to be a variable, we will immediately follow through with a
diamond elimination. This way, when the time comes for us to be abstract over
the reclusive adjunct (and the time will come, since our proofs must be linear),
it will already have been liberated of its structural brackets. In the second case,
we are in trouble. We need to employ the structural licensing pair qx■x, as in
Figure II.9, but there is no way for the proof assignment to have been cor-
rect preemptively: we would have needed to know that the variable is nested
before ever getting to actually build its nesting context. To solve this chicken
and egg problem, we need to allow ourselves an erroneous assignment, and
then travel back in time to retroactively correct it. No big deal: going back in
time means simply applying the substitution meta-pattern xA

i 7→ ▼x(x
■x A
i). In

non-obscure, this translates to traversing the proof, finding the problematic
hypothesis and replacing it with an x-marked (i.e. extractable) equivalent. Re-
constructing the proof is not sufficient though – we also need to perform all
the extrq rules necessary for the x-marked structure to always appear at the
structural onion’s outermost layer, as well as substitute it for its logical dia-
mond counterpart. At that point, we are at long last able to abstract over the
hypothesis.

The conventions described serve also to impose a canonical placement for
the diamond elimination pattern. In combination with our carefully planned
formulation of the extrq rule from Section 8.3.22, we have effectively relieved
the burden of proof equivalence checking: diamond eliminations are to be per-
formed as soon as possible and structural extractions as late as possible (but
no later!) – i.e. we will avoid perpetuating temporary structures unless they
have a purpose. To see this in action, let’s have a look at the example of Fig-
ure III.10. There, node 31 is originally assigned x31 : □mod(INF⊸INF). Upon
unboxing it for application, we realize it’s a hypothetical adjunct, therefore
we follow through with a diamond elimination to x′31 : ♢mod□mod(INF⊸INF)
to lose the mod brackets. Further down the line, we attempt to abstract over

1The variable may be free, but it could lie inaccessible behind structural brackets – don’t
mention it.

2As strictly localized and with shallow context – anytime.

Proof Extraction 125

id: 25
cat: whq
type: WHQ

id: 26
word: Waar
index: 1
pt: vnw

type: (◇whbody((◇x(□x(◇mod(□mod(INF⟶INF)))))⟶SV1))⟶WHQ

whd

id: 27
cat: sv1
type: SV1

whbody

id: 35
word: ?
pt: let

type: PUNCT

punct

id: 28
word: kunnen

pt: ww
type: ◇vc(INF)⟶◇su(VNW)⟶SV1

hd

id: 29
word: we
index: 2
pt: vnw

type: VNW

su

id: 30
cat: inf

type: INF

vc

id: 31
index: 1

type: □mod(INF⟶INF)

mod

id: 33
word: bonnen

pt: np
type: NP

obj1

id: 34
word: kopen

pt: ww
type: ◇obj1(NP)⟶INF

hd

c26 : ♢whbody(qx■x♢mod□mod(INF⊸INF)⊸Svi)⊸WHq
lex

c28 : ♢vc INF⊸♢suVNW⊸Svi
lex

x31 : □mod(INF⊸INF)
id

⟨x31⟩mod ⊢ INF⊸INF
□modE

x′31 : ■mod♢mod□mod(INF⊸INF)
id

⟨x′31⟩x ⊢ ♢mod□mod(INF⊸INF)
■xE

⟨x′31⟩x ⊢ INF⊸INF
♢modE

c34 : ♢obj1NP⊸INF
lex

c33 : NP
lex

⟨c33⟩obj1 ⊢ ♢obj1NP
♢obj1 I

c34, ⟨c33⟩obj1 ⊢ INF
⊸E

⟨x′31⟩x, c34, ⟨c33⟩obj1 ⊢ INF
⊸E

⟨⟨x′31⟩x, c34, ⟨c33⟩obj1⟩vc ⊢ ♢vc INF
♢vc I

c28, ⟨⟨x′31⟩x, c34, ⟨c33⟩obj1⟩vc ⊢ ♢suVNW⊸Svi
⊸E

c29 : VNW
lex

⟨c29⟩⊢♢suVNW
♢su I

c28, ⟨⟨x′31⟩x, c34, ⟨c33⟩obj1⟩vc, ⟨c29⟩su ⊢ Svi
⊸E

c28, ⟨c34, ⟨c33⟩obj1⟩vc, ⟨x′31⟩x, ⟨c29⟩su ⊢ Svi

extrq
x′′31 : qx■x♢mod□mod(INF⊸INF))

id

c28, ⟨c34, ⟨c33⟩obj1⟩vc, x′′31, ⟨c29⟩su ⊢ Svi
qxE

c28, ⟨c34, ⟨c33⟩obj1⟩vc, ⟨c29⟩su ⊢ qx■x♢mod□mod(INF⊸INF)⊸Svi
⊸I

⟨c28, ⟨c34, ⟨c33⟩obj1⟩vc, ⟨c29⟩su⟩whbody ⊢ ♢whbody(qx■x♢mod□mod(INF⊸INF)⊸Svi)
♢whbody I

........

c26, ⟨c28, ⟨c34, ⟨c33⟩obj1⟩vc, ⟨c29⟩su⟩whbody ⊢ WHq
⊸E

WR-P-E-I-0000039352.p.3.s.7(25)

Waar kunnen we bonnen kopen?
‘Where can we buy vouchers?’
c26 △whbody(λx

′′
31 .case ▽xx

′′
31 of x′31 in (c28 △vc(case ▽mod▼xx

′
31 of x31 in (▼modx31 (c34 △obj1c33))) △suc29)))

Figure III.10: Abstracting over a nested adjunct.

126 Dependency as Modality, Parsing as Permutation

x′31, only to find it trapped in a vc bracket. To facilitate the emancipation of the
hypothesis, we perform the meta-syntactic substitution x′31 7→ ▼xx

′
31, where

the new x′31 is of type ■x♢mod□mod(INF⊸INF). Empowered by its rectangular
black flag, the variable breaks free of its chains with the extrq rule, and gets di-
amond eliminated to x′′31 : qx■x♢mod□mod(INF⊸INF). The latter is bracketless
and exactly where we want it – we can finally perform the abstraction.

Nominal Domain The situation is not much different in the nominal do-
main, except for a change in the order we do things in. First, we must call
prove on the head; unlike before, it receives no type hint, as we do not expect
it to come out as a functor. Next, we requisition a proof for the determiner,
hinted as a function from the head’s type to the top type (with a complemen-
tary box on top, of course). Last, we ask for a proof for each adjunct, again as
the boxed endomorphism of the result. Same as before, we take the function
composition of all adjuncts; determiner first, since it’s the one responsible for
raising the noun to a noun phrase, followed by the garden variety modifiers
in order of appearance. At this point, we must thank our past selves for the
separation of noun and noun-phrase modifiers in two different tree layers, as
this has saved us the trouble of having to scratch our head contemplating how
to organize adjuncts.

Conjunctions We are almost there. The last bit remaining is unfortunately
also the hardest one: conjunctions. Conjunctions are the infernal harbinger of
torment and despair. Their ability to use linguistic material more than once
challenges the linearity of our type system. To overcome their dark influence,
we’ll need to resort to arcane conjurations from the ancient texts (summarized
for your convenience in Chapter I).

A few conjunctions are actually innocuous, i.e. when the tree inspected
consists of a single coordinator and a sequence of conjuncts. Porting our in-
tuitions on coordinator type assignments from Section 5.1.21, we obtain the
recipe ♢cnjχ⊸♢cnjχ⊸χ, where χ is to range over types. In the vanilla case,
we may simply call prove on each conjunct independently, hinting each as the
top type (which, if not hinted, will be the translation of the syntactic category
labels’ majority consensus). Then, we may move on to the coordinator, which
is hinted as a function from the (♢cnj-marked) conjuncts’ types to the top type.
Having used the same type hint amounts to a coercion that ensures that the
parts and the whole are of the same type – in other words, we are faithful
to our polymorphic recipe. A minor divergence is that our coordinator type
is slightly more general than originally prescribed, being a variadic function
rather than a binary one, since Lassy conjunctions are flat trees rather than
hierarchical ones (punctuations carrying no annotations by default).

Unlike their well-behaved kindred, elliptical conjunctions require special
treatment. Lassy rightly prefers pushing conjunctions to the topmost phrasal

1Coordinators are polymorphic types binding pairs of the same type into a conjoined pair –
no problem.

Proof Extraction 127

id: 1
cat: smain

type: SMAIN

id: 2
cat: smain

type: SMAIN

cnj

id: 3
word: Onafhankelijkheid

index: 1
pt: np

type: NP

su

id: 5
word: en
pt: vg

type: ◇cnj(X)⟶◇cnj(X)⟶X

crd

id: 6
cat: smain

type: SMAIN

cnj

id: 4
word: moet

pt: ww
type: ◇su(NP)⟶SMAIN

hd

id: 9
index: 1

type: ◇su(NP)

su

id: 7
index: 1

type: ◇su(NP)

su

id: 8
word: kan
pt: ww

type: ◇su(NP)⟶SMAIN

hd

c5 : ♢cnjχ⊸♢cnjχ⊸χ
lex

c4 : ♢suNP⊸Smain
lex

x9 : ♢suNP
id

c4, x9 ⊢ Smain
⊸E

c4 ⊢ ♢suNP⊸Smain
⊸I

⟨c4⟩cnj ⊢ ♢cnjχ
♢cnj I

c5, ⟨c4⟩cnj ⊢ ♢cnjχ⊸χ
⊸E

c8 : ♢suNP⊸Smain
lex

x7 : ♢suNP
id

c8, x9 ⊢ Smain
⊸E

c8 ⊢ ♢suNP⊸Smain
⊸I

⟨c8⟩cnj ⊢ ♢cnjχ
♢cnj I

c5, ⟨c4⟩cnj, ⟨c8⟩cnj ⊢ ♢suNP⊸Smain
⊸E

c3 : NP
lex

⟨c3⟩su ⊢ ♢suNP
♢su I

c5, ⟨c4⟩cnj, ⟨c8⟩cnj, ⟨c3⟩su ⊢ Smain
⊸E

wiki-6984.p.6.s.2(1)

Onafhankelijkheid moet en kan.
‘Independence must and can (happen).’
c5 △cnj(λx9.c4 x9) △cnj(λx7.c8 x7) △suc3

Figure III.11: Proving a subject ellipsis.

128 Dependency as Modality, Parsing as Permutation

level. The subject ellipsis of Figure III.11, for instance, is not annotated as the
conjunction of two heads applied to a single noun phrase, but rather as the
conjunction of two sentences sharing the same subject (the material subject has
been elevated to the same level as the conjuncts thanks to our earlier transfor-
mation). We’ll gladly follow along. Same as before, we will first seek a proof
for each conjunct, but now also any non-conjunct siblings. Conjuncts contain-
ing any variables whose nodes are coindexed with the non-conjunct siblings
(the latter necessarily being material counterparts of conjunct-internal phan-
toms) will be abstracted over these variables, before being marked by the ♢cnj I
rule. In the running example, conjunct 2 contains the phantom subject 9 and
conjunct 6 the phantom subject 7, both coindexed with material node 3. The
proofs of 2 and 6 will therefore be abstracted over their subject variables, and
the instantiation of the type variable χ will in this case be ♢suNP⊸Smain (in-
tentionally left implicit in the Figure for space economy). The proof we get
back is coincidentally an η-expanded version of the heads’ conjunction.

What if the elided item is not a complement, though? Not much changes,
really: we must still look for hypotheses “shared” between adjuncts and ma-
terially present in the current conjunction branch. The difference is that with-
drawing them this time around yields proofs of higher-order types. To see this
in practice, let’s consider the example of Figure III.12.1 Conjuncts 14 and 24
contain two phantom nodes each: 21 and 33, and 30 and 25, respectively. The
first of each pair (21 and 30) are the phantom objects attributed to the passive
participles. Their indices, 1 and 3, are properly contained within each con-
junct – therefore they are of no interest to us here. The second ones (31 and 25)
stand in for the missing auxilliary verb heading each conjunct, implementing
higher-order functions of type: ♢vc(♢obj1NP⊸PPART)⊸♢suNP⊸Smain. These
two share the same index 2, which materializes in node 19 – these are the
variables we must abstract over. The abstraction will result in type variable
χ being instantiated as the third order type:

(♢vc(♢obj1NP⊸PPART)⊸♢suNP⊸Smain)⊸Smain

in turn producing a fourth order type hint for the coordinator which doesn’t
even fit in the line... oof.

Complicated as it might be, this type should not be alien to you, diligent
reader. Let’s flip things around and focus on what we have instead of what
we miss. The dual view of having two sentences missing their head is that we
have two pairs of floating proofs: pair one grounded in nodes 15 and 22, and
pair two in nodes 26 and 31. If we were to allow products in our type calculus,
we could encode each pair as an item of type ♢suNP⊗♢vc(♢obj1NP⊸PPART)),
and use this to instantiate the polymorphic scheme. By type raising, we could
alternatively use them to derive corresponding proofs of type:

((♢suNP⊗♢vc(♢obj1NP⊸PPART))⊸A)⊸A

1Give it up for our first ever landscape proof!

Proof Extraction 129
id

:
1
3

c
a
t:

 s
m
a
in

id
:
1
4

c
a
t:

 s
m
a
in

ty
p
e

:
S
M
A
IN

cn
j

id
:
1
9

w
o
rd

:
w
e
rd
e
n

in
d
e
x
:
2

p
t:

 w
w

ty
p
e

:
..
.

h
d

id
:
2
3

w
o
rd

:
e
n

p
t:

 v
g

ty
p
e

:
◇
cn
j(
X
)⟶

◇
cn
j(
X
)⟶

X

cr
d

id
:
2
4

c
a
t:

 s
m
a
in

ty
p
e

:
S
M
A
IN

cn
j

id
:
3
2

w
o
rd

:
.

p
t:

 l
e
t

ty
p
e

:
P
U
N
C
T

p
u

n
ct

id
:
1
5

c
a
t:

 n
p

in
d
e
x
:
1

ty
p
e

:
N
P

su

id
:
2
0

c
a
t:

 p
p
a
rt

ty
p
e

:
P
P
A
R
T

v
c

id
:
3
3

in
d
e
x
:
2

ty
p
e

:
..
.

h
d

id
:
1
6

w
o
rd

:
v
e
le

p
t:

 v
n
w

ty
p
e

:
□
m
o
d
(N

P
⟶

N
P
)

m
o
d id

:
1
7

w
o
rd

:
P
a
le
st
ij
n
se

p
t:

 a
d
j

ty
p
e

:
□
m
o
d
(N

P
⟶

N
P
)

m
o
d

id
:
1
8

w
o
rd

:
h
u
iz
e
n

p
t:

 n
ty
p
e

:
N
P

h
d

id
:
2
1

in
d
e
x
:
1

ty
p
e

:
◇
o
b
j1
(N

P
)

o
b

j1

id
:
2
2

w
o
rd

:
o
p
g
e
b
la
ze
n

p
t:

 w
w

ty
p
e

:
◇
o
b
j1
(N

P
)⟶

P
P
A
R
T

h
d

id
:
2
5

in
d
e
x
:
2

ty
p
e

:
..
.

h
d

id
:
2
6

c
a
t:

 n
p

in
d
e
x
:
3

ty
p
e

:
N
P

su

id
:
2
9

c
a
t:

 p
p
a
rt

ty
p
e

:
P
P
A
R
T

v
c

id
:
2
7

w
o
rd

:
h
u
n

p
t:

 v
n
w

ty
p
e

:
□
d
e
t(
N
⟶

N
P
)

d
e
t

id
:
2
8

w
o
rd

:
b
e
w
o
n
e
rs

p
t:

 n
ty
p
e

:
N

n
p

_h
e
a
d

id
:
3
0

in
d
e
x
:
3

ty
p
e

:
◇
o
b
j1
(N

P
)

o
b

j1

id
:
3
1

w
o
rd

:
v
e
rm

o
o
rd

p
t:

 w
w

ty
p
e

:
◇
o
b
j1
(N

P
)⟶

P
P
A
R
T

h
d

c 2
3

:♢
cn

jχ
⊸
♢

cn
jχ
⊸

χ
le
x

. . . .
x 3

3,
⟨c

22
⟩v

c ,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⊢

S m
ai

n

⟨c
22
⟩v

c ,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⊢

χ
⊸

I

⟨⟨
c 2

2⟩
vc

,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⟩cn

j
⊢
♢

cn
jχ
♢

cn
jI

c 2
3,
⟨⟨
c 2

2⟩
vc

,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⟩cn

j
⊢
♢

cn
jχ
⊸

χ
⊸

E

. . . .
x 2

5,
⟨c

31
⟩v

c ,⟨
⟨c

27
⟩d

et
,c

28
⟩su
⊢

S m
ai

n

⟨c
31
⟩v

c ,⟨
⟨c

27
⟩d

et
,c

28
⟩su
⊢

χ
⊸

I

⟨⟨
c 3

1⟩
vc

,⟨
⟨c

27
⟩d

et
,c

28
⟩su
⟩cn

j
⊢
♢

cn
jχ
♢

cn
jI

c 2
3,
⟨⟨
c 2

2⟩
vc

,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⟩cn

j ,⟨
⟨c

31
⟩v

c ,⟨
⟨c

27
⟩d

et
,c

28
⟩su
⟩cn

j
⊢

χ
⊸

E
. . . .

c 1
9

:♢
vc
(♢

ob
j1

N
P
⊸

P
PA

R
T
)⊸
♢

su
N

P
⊸

S m
ai

n
le
x

c 2
3,
⟨⟨
c 2

2⟩
vc

,⟨
⟨c

16
⟩m

od
,⟨
c 1

7⟩
m

od
,c

18
⟩su
⟩cn

j ,⟨
⟨c

31
⟩v

c ,⟨
⟨c

27
⟩d

et
,c

28
⟩su
⟩cn

j ,c
19
⊢

S m
ai

n
⊸

E

W
R
-
P
-
E
-
I
-
0
0
0
0
0
1
5
0
0
7
.
p
.
1
.
s
.
1
4
6
(
1
3
)

V
el

e
Pa

le
st

ijn
se

hu
iz

en
w

er
de

n
op

ge
bl

az
en

en
hu

n
be

w
on

er
s

ve
rm

oo
rd

.
‘M

an
y

Pa
le

st
in

ia
n

ho
us

es
w

er
e

de
st

ro
ye

d
an

d
th

ei
r

re
si

de
nt

s
m

ur
de

re
d.

’
c 2

3
△

cn
j(

λ
x 3

3.
x 3

3
△

vc
(λ

x 2
1.
c 2

2
x 2

1)
△

su
(▼

m
od
c 1

6
(▼

m
od
c 1

7
c 1

8)
)
△

cn
j(

λ
x 2

5.
x 2

5
△

vc
(λ

x 3
0.
c 3

1
x 3

0)
△

su
(▼

de
tc

27
c 2

8)
)
c 1

9

Fi
gu

re
II

I.1
2:

Pr
ov

in
g

a
ve

rb
ph

ra
se

el
lip

si
s

w
it

h
a

hi
gh

er
-o

rd
er

he
ad

.

130 Dependency as Modality, Parsing as Permutation

for any A of our liking. The product can then be curried into:

(♢suNP⊸♢vc(♢obj1NP⊸PPART))⊸A)⊸A

Ring a bell yet? Using Smain in place of A, we end up exactly where we started.1

Now, toying around with raised types is by no means ideal, as it reinforces the
propensity of coordinators to become very long and complex. On the other
hand, it absolves us from having to incorporate an explicit product and pro-
tects us from the headaches it comes with (like proof equivalence under prod-
uct elimination, type equivalence under different product branchings, more
latex symbols to render in console pretty printing, etc., just to name a few). On
the less cynical side, it also has the merit of permitting more flexible semantic
interpretations for the user-to-be. Conjoining a series of arguments and feed-
ing the result to the predicate means that the semantic interpretation of the
coordinator would be inescapably bound to a local scope. Conjoining a series
of λ abstractions and applying the result to the shared predicate grants the co-
ordinator access to the full context of the conjunction, opening the door to a fu-
ture semantic interpretation that can duplicate and distribute meaning if and
as desired. Such a lifted interpretation is aligned in spirit with the long line of
work on categorial conjunction semantics [Oehrle, 1987; Hendriks, 1995, inter
alia], except simplified in not having to account for the surface discontinuity
caused by the elision of linguistic material.

More generally, the proof of each conjunct will contain a mixture of con-
stants and variables, the latter being any combination of heads, complements
and adjuncts. All “shared” variables will be abstracted over. To maintain the
homogeneousness of functors regardless of the context they appear in, the or-
der of abstraction is reverse to the obliqueness hierarchy we have used so far.
Head- and adjunct- functors, falling outside the hierarchy, will have priority
over complements, appearing as the first argument of the higher-order types
they help form. Any secondary coordinator appearing within the same con-
junction (its dependency now labeled cor, due to our earlier transformation),
will be the first argument to be consumed by the main coordinator (the two
are thus modeled as a derived and discontinuous coordinator phrase).

11.2.4 Post-Processing

The proofs we get back don’t need to be type-checked: the extraction has al-
ready taken care of that for us. From a theoretical perspective, all we need
to do is assert their linearity in terms of both variables and constants, i.e.
make sure that all words of the input sample were used (exactly once each),
and ditto for variables, except they must also be bound (in the off chance
a phantom node was never abstracted over). For the sake of uniformity, all
proofs obtained are β and η reduced. From a representational perspective, our

1If this made little sense, you should actually read the introduction instead of relying on
footnote clues. Also I take “diligent” back.

Proof Extraction 131

proofs are still overly attached to their Lassy roots. Constants and variables are
named according to their node origins, which will no longer make any sense
after the tree has been discarded. We therefore rename constants according
to their order of appearance in the sentence, and variables by enumeration,
following a depth-first left-first traversal of the proof tree (preferrable to de
Bruijn indexing for human legibility). The collection of extracted proofs we
will call Æthel, for automatically extracted theorems from Lassy, thus resolv-
ing the mystery of this section’s cryptic name for those that made it this far. For
a practical user’s guide to Æthel, refer to Appendix 2. For moving on, it suf-
fices to know that an analysis is essentially a nicely packaged tuple, containing
a proof on one coordinate and a tokenized and type-annotated sentence on the
other.

11.3 Analysis

11.3.1 Quantitative Obligations

We are done with proving; time to get to counting. But first, a disclaimer. The
numbers reported below have been relatively stable, but may well get to differ
in between the time I write these words and the time you get to read them.
They are correct in my subjective frame of reference (version), namely 1.0.0a5.

From Lassy to Æthel From the 65 200 trees of Lassy Small, we discard 2 607
for being a single word or punctuation mark. The remaining 62 593 are pruned
into 69 583 discourse-free cuttings (1.11 cuttings per source tree, on average).
From these, the extraction algorithm produces 68 763 theorems, bringing its
(processed) corpus coverage to a gratifying 98.82%. All failures are due to
problematic tree structures; mostly conjunctions without a coordinator, or,
rarely, linearity breaches (free variables that cannot be justified by an exist-
ing proof pattern). A random 80/10/10 split is applied to the source Lassy
samples, which translates into 56 875 (82.7%) train, 6 118 (8.9%) dev and 5 770
(8.4%) test Æthel samples (81.7/8.8/8.3). Performing the split on Lassy rather
than directly on Æthel ensures consistency between different revisions, and
asserts that any sample overlap from subtree duplications during pruning
will be contained within the same subset, keeping cross-contamination to a
minimum.

To quantititatively measure the impact of the preprocessing transforma-
tions (i.e. see how close the derived dataset is to the original), we first ex-
amine how many of Lassy’s samples are proven unaltered. In line with our
observations on discourse level annotations from earlier, we find that 48 057
(73.78%) of the filtered Lassy samples can be uniquely mapped to an Æthel
proof. Counting the number of samples enumerating a certain number of
words, we arrive at the graph of Figure III.13. Surprising noone, the graph
reveals that both the original and the derived corpus exhibit a right-skewed
distribution of sample lengths, the latter being a left-shifted version of the for-

132 Dependency as Modality, Parsing as Permutation

0 10 20 30 40 50

0

1,000

2,000

3,000

Sample Length

Sa
m

pl
e

C
ou

nt
ÆThel
Lassy

Figure III.13: Sample counts by length.

mer. Concretely, Lassy has a mode of 13 and a median of 17.4 (ignoring the
one-word sentences, for fairness), whereas Æthel has a mode of 10 and a me-
dian of 15. The difference between them is not that striking and really only
affects their left tails and centers; in fact, the two distributions go almost hand
in hand towards their right tails. Practically, we lose a small proportion of
originally long and medium-sized samples, and the broken parts accumulate
into a bulk of short and really short samples (hence the outlier peak at 2). Not
bad, considering.

Theorems To quantify the proof-theoretic diversity of the 68 763 extracted
samples, we abstract away from lexical content and end up with a total of
55 108 unique theorems, where constants are identified indexically (and not
by their string). Figure III.14 groups and displays them according to how com-
mon they are, i.e. how many times we see the same theorem associated to
a different sentence. Evidently, the vast majority of unique theorems (52 739
or 95.7%) occur but a single time within the dataset (i.e. they are assigned
to a single sample), with logarithmically10 fewer theorems being assigned to
exponentially2 more sentences, making Æthel a rich and intricate resource.

Proof Ambiguity We’ve already made peace with the fact that our type logic
is syntactically underspecified and prone to overgeneration. But a side-effect
of this concession is our inability to tell well- and ill- founded ambiguities
apart, i.e. we have no means of knowing whether a second proof derivable

Proof Extraction 133

20 21 22 23 24 25 26 27 28
100

101

102

103

104

105
52 739

1 742

370

163

52

19
11

4
6

1

Times Theorems were Assigned

N
um

be
r

of
Th

eo
re

m
s

Figure III.14: Proof sparsity in Æthel.

from the exact same proof frame (sequence of type assignments) is a clear-cut
error or indeed a linguistically plausible alternative reading. Lassy itself only
provides the derivation of one single reading (and it is not our place to ask
which reading that is). We can use this to our advantage to try and estimate
the real derivational ambiguity of Æthel, by first isolating the proof frame of
each sample (taking the type sequence independent of the sentence it was as-
signed to), and then counting the amount of unique proofs derived from each
frame.1 In total, there’s 56 098 unique proof frames, but 53 867 (96%) of those
occur only once, thus being of little use to our purposes (since each will un-
avoidably be mapped to a single proof). Of the remaining 2 292, 2 231 (97.3%)
are mapped to one unique proof, whereas 61 (2.7%) may derive one of two
unique proofs. Using this as a guideline, we find 472 potentially ambiguous
samples in the entirety of Æthel (a measly 0.7%), their frames being among the
61 suspects. Manual inspection reveals most of them to really be ambiguous
(e.g. the proof assigned might prescribe one of two possible modifier attach-
ments), although in some cases the alternative reading is linguistically ruled
out on the basis of selectional restrictions. Repeating the above after first cast-
ing the proof and type assignments to LP (dropping any dependency infor-
mation via a stripping morphism), we end up with 56 185 unique frames for
54 170 unique proofs, with 2 471 frames occurring more than once. Of these,

1Note that we are gathering just the sequence of types assigned to a sample and not the proof’s
antecedent, since the modal bracketing structure already disambiguates the proof assignment.

134 Dependency as Modality, Parsing as Permutation

2 374 are behind 1 unique proof, 112 behind 2, 6 behind 3, and 1 is behind 5.
Potentially ambiguous samples are now doubled (909, or 1.3% of the total),
and ambiguities are more commonly artificial; would-be alternative readings
for the newly ambiguous samples are usually ruled out by morphosyntactic
constraints invisible to the theory.

What are these numbers trying to tell us? Well, two things. First, that us-
ing an undirectional logical core doesn’t really estrange the grammar from the
lexicon. Proof frames are sparse, and the bulk of them are pointing to a sin-
gle proof; we are still as lexicalized as it gets. That’s not to say that choosing
the correct type assignments will by any means suffice for parsing, but rather
that it will certainly narrow down the options of a (logically and linguisti-
cally) correct proof to almost exactly one. Second, it tells us that dependency
decorations seem to serve an auxiliary role, additional to the one intended:
they increase the count of unique frames and decrease the number of proofs
grown per frame, trading derivational ambiguity for lexical type ambiguity.
This is not really surprising: hypotheses launched by higher-order functors
are restricted to a predetermined grammatical role, which, by the exclusion
principle (no two complements of the same role), forces overt complements to
assume the leftover role, implicitly resolving ambiguity.

Lexical Type Ambiguity This brings us to the lexicon: the binary relation
connecting keys (words or strings, really) to types, and obtained by the aggre-
gation of all our proofs’ type assignments. Æthel as a whole contains 1 033 858
words chunked into 992 385 phrases, each chunk carrying a single assignment.
These amount to 74 812 (67 883 after case normalization) unique words and
76 746 (71 077) unique phrases, the latter being essentially the lexicon’s do-
main. On the codomain’s side, we have a grand total of 5 762 unique LP♢,□
types. Stripped of their modalities, these fall back to 3 542 pure linear types,
evidencing the import of the added dependency axis. The first question to
ask then is: how functional is the word to type relation encoded by the lexi-
con? Answering that question is Figure III.15, which in short says “not much,
really”. Despite most lexical keys (56 224) having a single unique image, ambi-
guities are quite common, the number of assignments exponentially2 increas-
ing for a logarthmically10 declining number of keys. At the end of the tail
we find several chameleon words appearing in multiple guises; chief among
them is the usual suspect en ‘and’, counting as many as 1 045 (!) unique types
in just 41 614 occurrences. No less than 1 363 types contain a ♢cnj marking,
and are thus associated with coordinators – the price of braving conjunctions
with concretely instanced, pre-raised types; Table III.4 presents the most com-
monly occurring coordinator types. But this is painting an overly grim picture;
seen as random variables, lexical keys actually have most of their probabil-
ity masses concentrated on their modes. The average probability of the most
common type per key lies at a (very high) 89.04%, while naively assigning
the mode to each lexical assignment corpus-wide (disregarding context) es-
tablishes a comfortable 67.08% baseline, asserting that our lexical entries are

Proof Extraction 135

20 21 22 23 24 25 26 27 28 29
100

101

102

103

104

105 56 224

15 932

2 999

1 079

349

99
54

7

2
1

Number of Unique Types Assigned

N
um

be
r

of
Le

xi
ca

lK
ey

s

Figure III.15: Lexical Type Ambiguity

in practice quite consistent when grouped by their keys.

Lexical Type Sparsity So ambiguity is not a major statistical threat, despite
the high average number of options per key; some opposing force must be
counterweighting its effect. In reality, the only reason we are able to naively
guess assignments with some reasonable accuracy is exactly because the less-
than-most-frequent options are in fact very infrequent – the demon’s name is
sparsity. To diagose the problem and quantify its extent, we perform a number
of tests. First, we measure the proportion of the 5 762 types that occur more
than n times, and plot the result in Figure III.16 (if you prefer jargon, this is
the inverse empirical cumulative distribution of type occurrences). The dash-
dotted line leaves little room for interpretation: 2 747 (47.7%) of the total types
have only a single occurrence, 4 603 (79.9%) have less than 10 occurrences,
and only 310 (5%) are common enough to boast more than 100 occurrences
– our types are quite sparse alright. This goes to show that uncommon type
assignments are uncommon globally, and not just in the context of the lexical
key that maps to them; in other words, a type rarely associated with some
lexical key is likely rare to find among any key.

To analyze the real impact of sparse types, we have to holistically inspect
their corpus-wide distribution. To that end, we repeat the above measure-
ment, this time focusing on type assignments and samples rather than just
types. Intuitively, we are interested in the proportion of the 992 385 type as-

136 Dependency as Modality, Parsing as Permutation

Concrete Type # Occurrences Concrete Type # Occurrences

NP 7,620 □mod(N⊸N) 582
Smain 2 623 □app(NP⊸NP) 528

□mod(NP⊸NP) 1 655 NP (×4) 400
NP (×3) 1 366 PP 361

♢mod□mod(NP⊸NP)⊸NP 1 147 ♢suVNW⊸Smain 344
♢suNP⊸Smain 1 113 TI 302

♢det□det(N⊸NP)⊸NP 592 □mod(Smain⊸Smain) 282

Table III.4: Most common concrete types instantiating the polymorphic coordi-
nator, and relevant occurrence counts. Coordinator arity is 2 unless specified.

signments we could resolve when considering only types occurring more than
n times, and the proportion of the 68 763 samples containing resolved assign-
ments only. Things look somewhat less scary here: on the type assignment
front, the 5% most common types cover 98% of the total assignments, and the
top 1% (occurring more than 1 000 times) is still good enough for 90% of the
assignments. Sentential coverage declines more rapidly, indicating that rare
types are, to our discontent, evenly distributed within our samples – discard-
ing types with less than 10 occurrences, for instance, already brings sentential
coverage down to 88%. This will haunt us later, but for now let’s keep linger-
ing in the bliss of ignorance.

Lexical Key Sparsity On the other side of the lexicon lie lexical keys – the
words and phrases we may use to index the lexicon. Lexical key sparsity is
completely external to the extraction algorithm (words and their occurrence
statistics being directly inherited from Lassy and its choice of corpora). It’s also
no longer a real practical consideration, since distributed word vectors and
pretrained language models have long superseded the lexically fixed compo-
nents of the modern NLP pipeline. Still, for the sake of completeness (and
since the lexicon is a tiny resource of its own), we may as well have a quick
glance of the statistics of the lexicon’s domain. Figure III.17 shows the distri-
bution of lexical key occurrences; most keys occur just once, whereas a hand-
ful occur up to a few thousand times.1 The most common word of Æthel is
the gendered definite determiner de, claiming the throne with an incontestible
56 925 occurrences and making up for 5.7% of all words just by itself.

1Interpolate between most and a handful in the log10/log2 plane to find any point of interest.

Proof Extraction 137

100 101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Type Occurrence Count

Pr
op

or
ti

on
C

ov
er

ed

Types
Samples

Assignments

Figure III.16: Proportion of types, type assignments and samples covered as a
function of a minimum type occurrence threshold.

138 Dependency as Modality, Parsing as Permutation

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214
100

101

102

103

104

105
43 913

15 782

7 675

4 152
2 398

1 447

716

381

170

69

29 26

9
6 6

2

Number of Occurrences

N
um

be
r

of
Le

xi
ca

lK
ey

s

Figure III.17: Lexical Key Sparsity

Proof Extraction 139

11.3.2 Quality Control

We made it through the boring part! With all the numbers laid down, all that’s
left to do is showcase how Æthel treats common and idiosyncratic construc-
tions of Dutch. For space economy, we’ll drop the natural deduction presenta-
tion in favor of the compactified λ terms – we’ve seen enough back-and-forths
by now to take the training wheels off. The glossed examples to follow con-
tain a third line for type assignments, and the prescribed λ term before the
free translation.

Higher-Order Reasoning The extraction recipe applied to coindexed phan-
tom nodes seems to generalize well, producing elegant higher-order proof
patterns that capture the corresponding syntactic reentrancies prescribed from
the Lassy graph quite well. In (III.7), waarom both heads the wh-question and
provides a hypothetical argument for the verb-initial direct question nested
within. In (III.8), the auxiliary worden properly accounts for the passive by
providing a hypothetical object for the transitive past participle behandeld.

(III.7) dpc-vla-001161-nl-sen.p.107.s.1(1)

Waarom
Why
c0 :: ♢whbody(♢mod□mod(Svi⊸Svi)⊸Svi)⊸WHq

werken
work
c1 :: ♢su VNW⊸Svi

we
we
c1 :: VNW

?
?
PUNCT

c0 △whbody(λx0.case ▽modx0 of x1 in (▼modx1 (c1 △suc2))

‘Why do we work?’

(III.8) WR-P-P-J-0000000001.p.38.s.2(1)

Deze
these
c0 :: VNW

worden
become
c1 :: ♢vc(♢obj1 VNW⊸PPART)⊸♢su VNW⊸Smain

behandeld
treated
c2 :: ♢obj1 VNW⊸PPART

in
in
c3 :: ♢obj1 NP⊸□mod(PPART⊸PPART)

hoofdstuk
chapter
c4 :: NP

4
4
c5 :: □app(NP⊸NP)

.

.
PUNCT

c1 △vc(λx0.▼mod(c3 △obj(▼appc5 c4) (c2 x0))) △suc0

‘These will be treated in chapter 4.’

Relative Clauses The derivational ambiguity attributed to relative clauses is
now implicitly cast into lexical type ambiguity – the relativizer obtains a dif-
ferent type assignment depending on the type of relative clause it introduces.
Examine the type assignments to the relativizer die in the examples below,
and notice that the hypothesis of (III.9) is forced to occupy the object slot of
oproepen, as opposed to the hypothesis of (III.10) which is forced to occupy
the subject slot of volgen. This is not just due to the decorations assigned, but

140 Dependency as Modality, Parsing as Permutation

also because of the atomic type distinction between pronouns VNW and noun
phrases NP1, implicitly filtering out implausible argument associations.

(III.9) WS-U-E-A-0000000215.p.25.s.1(1)

Beelden
Pictures
c0 :: NP

die
that
c1 :: ♢relcl(♢su VNW⊸Ssub)⊸□mod(NP⊸NP)

slechte
bad
c2 :: □mod(NP⊸NP)

herinneringen
memories
c3 :: NP

oproepen
evoke
c4 :: ♢obj1 NP⊸♢su VNW⊸Ssub

.

.
PUNCT

▼mod(c1 △relcl(c4 △obj1(▼modc2 c3))) c0

‘Pictures that evoke bad memories.’

(III.10) pc-ind-001645-nl-sen.p.12.s.1(13)

de
the
c0 :: □det(N⊸NP)

strategie
strategy
c1 :: N

die
that
c2 :: ♢relcl(♢obj1 VNW⊸Ssub)⊸□mod(NP⊸NP)

ze
they
c3 :: VNW

volgen
follow
c4 :: ♢obj1 VNW⊸♢su VNW⊸Ssub

is
is
c5 :: ♢predc ADJ⊸♢su NP⊸Smain

eeuwenoud
centuries.old
c6 :: ADJ

.

.
PUNCT

c5 △predcc6 △su(▼mod(c2 △relcl(λx0.c4 x0 △suc3)) (▼detc0 c1))

‘the strategy they follow is centuries old’

Word Order & Sentential Types Similarly, word order may not be formally
treated, but the subcategorization of sentential types provides a heuristic clue
toward what the correct association between verbal arguments and their sen-
tential positioning should be. Compare the distinct positioning of the verbal
head heeft in the examples below and how it reflects on its type assignment. In
(III.11), the result type is fixed to being a main clause, whereas in (III.12) the
result type accounts for direct questions being verb initial. This goes to show
that lexical type ambiguity is not the adverse effect of a misbehaved extraction
or an ill-thought logic, but actually a reflection of the real morphosyntactic
plurality of Lassy (and by extension, Dutch).

(III.11) WR-P-P-I-0000000130.p.1.s.1(1)

Vet
Fat
c0 :: NP

heeft
has
c1 :: ♢obj1 NP⊸♢su NP⊸Smain

geen
no
c2 :: □mod(NP⊸NP)

smaak
taste
c3 :: NP

.

.
PUNCT

c1 △obj1(▼modc2 c3) △suc0

‘Fat has no taste.’
1Where relative clause gaps are always the former, due to being coindexed with the rela-

tivizer.

Proof Extraction 141

(III.12) WR-P-P-C-0000000008.p.16.s.1(2)

Heeft
Has
c0 :: ♢obj1 NP⊸♢su NP⊸Svi

uw
your
c1 :: □det(N⊸NP)

woning
residence
c2 :: N

mechanische
mechanical
c3 :: □mod(NP⊸NP)

ventilatie
ventilation
c4 :: NP

?
?
PUNCT

c0 △obj1(▼modc3 c4) △su(▼detc1 c2)

‘Does your residence have mechanical ventilation?’

Discontinuities Horizontal (i.e. word-order) discontinuities are trivialized
by the non-directional type system. Neither the discontinuous om..te ‘to’ nor
the displaced participle of the separable verb wegnemen ‘take away’ have any
difficulty finding their place in the derivation of (III.13).

(III.13) WR-P-P-C-0000000048.txt-162(6)

Om〉
To〉
c0 :: ♢cmpbody TI⊸OTI

eventuele
potential
c1 :: □mod(NP⊸NP)

twijfel
doubts
c2 :: NP

weg
away
c3 :: BW

〈te

c4 :: ♢cmpbody INF⊸TI

nemen
take
c5 :: ♢svp BW⊸♢obj1 NP⊸INF

c0 △cmpbody(c4 △cmpbody(c5 △svpc3 △obj1(▼modc1 c2)))

‘To cast away any doubts’

Likewise, types don’t have to vary for the two different placements of past
participles in the perfect or the passive; inspect the positioning of the auxiliary
heeft in relation to the past participles geı̈nformeerd and bezield in Examples
(III.14) and (III.15) below.

(III.14) WS-U-E-A-0000000046.p.8.s.6(1)

Hij
He
c0 :: VNW

erkent
admits
c1 :: ♢vc CP⊸♢su VNW⊸Smain

dat
that
c2 :: ♢cmpbody Ssub⊸CP

hij
he
c3 :: VNW

de
the
c4 :: □det(N⊸NP)

kamer
chamber
c5 :: N

onjuist
wrongly
c6 :: □mod(PPART⊸PPART)

geı̈nformeerd
informed
c7 :: ♢obj1 NP⊸PPART

heeft
has
c8 :: ♢vc PPART⊸♢su VNW⊸Ssub

.

.
PUNCT

c1 △vc(c2 △vc(▼modc6 (c7 △obj1(▼detc4 c5)))) △su(c0)

‘He admits that he has wrongly informed the chamber.’

142 Dependency as Modality, Parsing as Permutation

(III.15) WR-P-P-I-0000000173.p.1.s.2(1)

Hij
He
c0 :: VNW

moet
must
c1 :: ♢vc INF⊸♢su VNW⊸Smain

begrijpen
understand
c2 :: ♢vc WHsub⊸INF

wat
what
c3 :: ♢whbody(♢su VNW⊸Ssub)⊸WHsub

de
the
c4 :: □det(WW⊸NP)

verdachte
suspect
c5 :: WW

heeft
has
c6 :: ♢vc PPART⊸♢su VNW⊸Ssub

bezield
possessed
c7 :: ♢obj1 NP⊸PPART

.

.
PUNCT

c1 △vc(c2 △vc(△whbody(c6 △vc(△obj1(▼detc4 c5))))) △suc0

‘He must understand what possessed the subject.’

Example (III.15) is of special interest, showcasing also the absence of “conver-
sion” rules – the nominalized present participle verdachte is not cast into a N,
but used as-is, forcing a non-standard type assignment to the determiner.

Vertical (i.e. dependency domain) discontinuities are a tad trickier, requir-
ing the qx■x type pattern to unlock. Combined with our position-explicit for-
mulation of the ♢E rules, this has the side-effect of producing rather compli-
cated proofs and terms, even for relatively short and simple sentences. In the
example below, the hypothetical modifier seeks to apply to a complete past par-
ticiple, forcing the transitive participle forming the passive to really apply to
a hypothetical object noun phrase, only to then immediately abstract over it,
before the whole extrq contraption is set to work. The result is a term with as
many variables as constants – not a particularly pleasant sight to behold, even
if keeping terms and proofs representationally proximal.1

(III.16) dpc-bmm-001078-nl-sen.p.1.s.1(1)

Hoe
How
c0 :: ♢whbody(qx■x♢mod□mod(PPART⊸PPART)⊸Svi)⊸WHq

worden
become
c1 :: ♢vc(♢obj1 NP⊸PPART)⊸♢su NP⊸Svi

modellen
models
c2 :: NP

ontwikkeld
developed
c3 :: ♢obj1 NP⊸PPART

c0 △whbody(λx0.case ▽xx0 of x1 in

c1 △vc (λx2.case ▽mod▼xx1 of x3 in (▼modx3 (c3 x2))) △suc2)

‘How are models developed’

Conjunctions A similar effect is observed with conjunctions. Even though
the polymorphic scheme works wonders with simple coordination, ellipses

1Selectively using the shortcut notation of Section 4.1.2 at the user’s behest is an option, pro-
ducing the somewhat more legible: c0 △whbody(λx0.c1 △vc(λx1.▼mod▽mod▼x▽xx1 (c3 x1) △suc2) .

Proof Extraction 143

can quickly turn types humongous and analyses illegible. In (III.17) our de-
fense of Lassy’s tendency to distribute modifiers among conjuncts backfires,
as we end up with a coordinator joining not two noun phrases, but two noun
phrases missing a mobile modifier. The proof abides by our design decision to
allow for flexible semantic interpretations, but in doing so gives us a headache
to visually parse. It’s worth pointing out that the actual modifier does not ac-
tually need to be mobile, being just an argument to the coordinator. This goes
to show that the polymorphic scheme is a gentle suggestion and not a strict
mandate, allowing for sentence-specific adjustments and variations.

(III.17) WS-U-E-A-0000000243.p.1.s.1(14)

Dertig
Thirty
c0 :: □mod(NP⊸NP)

vrouwen
women
c1 :: NP

en
and
c2 :: ♢cnjχ⊸♢cnj(χ)⊸χ⋆

kinderen
children
c3 :: NP

χ := ♢mod□mod(NP⊸NP)⊸NP

χ⋆ := □mod(NP⊸NP)⊸NP

c2 △cnj(λx0.case ▽modx0 of x1 in (▼modx1 c3))

△cnj(λx2.case ▽modx2 of x3 in (▼modx3 c1))

c0

‘Thirty women and children’

Multiwords & Discourse Parts Multiword phrases not caught by our ad
hoc transformations find their way to Æthel’s derivations, polluting the lexi-
con with opaque, non-compositional phrasal types; in (III.18), for instance, the
phrase Op het laatst is assigned a single type. This is suboptimal, but except
for manually reannotating all multiword annotations, no immediate solution
presents itself. The example is also interesting in showing how Æthel treats
isolated non constituents torn apart from their phrasal context. The phrase is
obviously a pruned adjunct of sorts, but the usual type assigment of a boxed
endomorphism is impossible, since the phrasal head is absent. Not knowing
what the wider phrasal type is, the extraction algorithm falls back to calling
the non-constituent what it is: an adverbial. The same approach is followed
universally, meaning that all of Æthel’s samples derive atomic types.

(III.18) WR-P-E-I-0000050381.p.1.s.531(3)

Op het laatst
At the end
c0 :: ADV

van
of
c1 :: ♢obj1⊸□mod(ADV⊸ADV)

de
the
c2□det(N⊸NP)

oorlog
war
c3 :: N

▼mod(c1 △obj1(▼detc2 c3) c0

‘At the end of the war’

144 Dependency as Modality, Parsing as Permutation

12 Key References & Further Reading

The chapter has presented Æthel and detailed the process toward its con-
struction. The baby version of Æthel made an early public appearance in my
thesis [Kogkalidis, 2019]. Back then, it didn’t yet have a name, being only a
partially worked out type lexicon – nevertheless, its statistical kinks were al-
ready apparent. The full resource gradually took form as a proof bank proper,
and was initially described in Kogkalidis et al. [2020]. The chapter is a signif-
icantly more mature version of the paper, describing an overhauled version
that shares the same general design philosophy but with lighter preprocessing
(leading to longer and higher quality proofs) and wider coverage (improving
linguistic variation). The most important feature of the overhaul is the revised
extraction algorithm, reimlemented so as to ensure type safety, guaranteeing
the formal correctness of the extracted proofs and fixing some suboptimal an-
notations pertaining to the modal decorations of higher-order types.

My little bubble aside, corpus extraction is a fan favorite for the compu-
tationally inclined linguists (or the linguistically inclined computists). The
endeavour was popularized by the CCGbank [Hockenmaier and Steedman,
2007], a semi-automatically extracted corpus of combinatory categorial gram-
mar derivations, following a proof of concept in German [Hockenmaier, 2006].
CCGbank has since become a flagship for the applied categorial grammarian,
spawning many offsprings, monolingual [Bos et al., 2009; Tse and Curran,
2010; Ambati et al., 2018, inter alia], and aligned [Bos et al., 2017; Abzianidze
et al., 2017]. More akin to our proof-theoretic regime and forebearers to this
work are the French TLGbank [Moot, 2010b], and the type-logical conversion
of the spoken Dutch corpus [Moot, 2010a], both following the multimodal
Lambek tradition.

Chapter III Bibliography

L. Abzianidze, J. Bjerva, K. Evang, H. Haagsma, R. van Noord, P. Ludmann,
D.-D. Nguyen, and J. Bos. The Parallel Meaning Bank: Towards a multilin-
gual corpus of translations annotated with compositional meaning repre-
sentations. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, pages 242–
247, Valencia, Spain, Apr. 2017. Association for Computational Linguistics.
URL https://aclanthology.org/E17-2039.

B. R. Ambati, T. Deoskar, and M. Steedman. Hindi CCGbank: A CCG treebank
from the Hindi dependency treebank. Language Resources and Evaluation, 52
(1):67–100, 2018.

L. Augustinus. Complement raising and cluster formation in Dutch. PhD thesis,
KU Leuven, 2015.

S. Barbiers. Word order variation in three-verb clusters and the division of
labour between generative linguistics and sociolinguistics. In L. Cornips
and K. Corrigan, editors, Syntax and Variation. Reconciling the Biological and
the Social, volume 265, pages 233–264, Nederland, 2005. John Benjamins
Publishing. ISBN 902724779X.

J. Bos, C. Bosco, and A. Mazzei. Converting a dependency treebank to a cat-
egorial grammar treebank for Italian. In Eight international workshop on tree-
banks and linguistic theories (TLT8), pages 27–38. Educatt, 2009.

J. Bos, V. Basile, K. Evang, N. Venhuizen, and J. Bjerva. The groningen meaning
bank. In N. Ide and J. Pustejovsky, editors, Handbook of Linguistic Annotation,
volume 2, pages 463–496. Springer, 2017.

D. Dowty. Grammatical relations and Montague grammar. In The nature of
syntactic representation, pages 79–130. Springer, 1982.

P. Hendriks. Ellipsis and multimodal categorial type logic. In Proceedings of
Formal Grammar, pages 107–122, 1995.

https://aclanthology.org/E17-2039

146 Dependency as Modality, Parsing as Permutation

D. Heylen. Underspecification in type-logical grammars. In Selected Papers
from the Second International Conference on Logical Aspects of Computational
Linguistics, LACL ’97, page 180–199, Berlin, Heidelberg, 1997. Springer-
Verlag. ISBN 3540657517.

J. Hockenmaier. Creating a CCGbank and a wide-coverage CCG lexicon for
German. In Proceedings of the 21st international conference on computational lin-
guistics and 44th annual meeting of the association for computational linguistics,
pages 505–512, 2006.

J. Hockenmaier and M. Steedman. CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank. Computa-
tional Linguistics, 33(3):355–396, 09 2007. ISSN 0891-2017. doi: 10.1162/coli.
2007.33.3.355.

R. Huybregts. The weak inadequacy of context-free phrase structure gram-
mars. Van periferie naar kern, pages 81–99, 1984.

K. Kogkalidis. Extracting and learning a dependency-enhanced type lex-
icon for Dutch. Master’s thesis, Utrecht University, 2019. URL https:
//studenttheses.uu.nl/handle/20.500.12932/32880.

K. Kogkalidis, M. Moortgat, and R. Moot. ÆTHEL: Automatically extracted
typelogical derivations for Dutch. In Proceedings of the Twelfth Language Re-
sources and Evaluation Conference, pages 5257–5266, Marseille, France, May
2020. European Language Resources Association. ISBN 979-10-95546-34-4.
URL https://aclanthology.org/2020.lrec-1.647.

R. Moot. Extraction of type-logical supertags from the spoken Dutch corpus,
2010a.

R. Moot. Semi-automated Extraction of a Wide-Coverage Type-Logical Gram-
mar for French. In TALN 2010, Proceedings TALN 2010, Montréal, Canada,
July 2010b. URL https://hal.inria.fr/inria-00494062.

R. T. Oehrle. Boolean properties in the analysis of gapping. In Discontinuous
constituency, pages 201–240. Brill, 1987.

C. Pollard. Type-logical HPSG. In Proceedings of Formal Grammar, pages 107–
124, 2004.

C. Pollard and I. A. Sag. Head-driven phrase structure grammar. University of
Chicago Press, 1994.

S. M. Shieber. Evidence against the context-freeness of natural language. In
Philosophy, language, and artificial intelligence, pages 79–89. Springer, 1985.

D. Tse and J. R. Curran. Chinese CCGbank: extracting ccg derivations from
the Penn Chinese treebank. In Proceedings of the 23rd international conference
on computational linguistics (Coling 2010), pages 1083–1091, 2010.

https://studenttheses.uu.nl/handle/20.500.12932/32880
https://studenttheses.uu.nl/handle/20.500.12932/32880
https://aclanthology.org/2020.lrec-1.647
https://hal.inria.fr/inria-00494062

Chapter III Bibliography 147

G. van Noord. At last parsing is now operational. In Actes de la 13ème
conférence sur le Traitement Automatique des Langues Naturelles. Conférences in-
vitées, pages 20–42, 2006.

G. van Noord, G. Bouma, F. Van Eynde, D. de Kok, J. van der Linde, I. Schu-
urman, E. T. K. Sang, and V. Vandeghinste. Large scale syntactic annotation
of written dutch: Lassy. Essential Speech and Language Technology for Dutch,
page 147, 2013.

CHAPTER IV

Learning to Prove

Like sudoku, but with types.

This thesis was originally envisaged as a stepping stone toward an inte-
grated approach at structural reasoning and meaning representation; a type-
driven model of syntax reflected in a vector-based model of meaning. When
the plans were first laid down, such a deliverable was not just theoretically
possible, but also technically relevant – distributional semantics and word
vectors were in their heyday, machine learning was rapidly taking off, parsers
all of a sudden were becoming reliable, structured attention was a buzzword.
Everything seemed to point towards the imminent bloom of a new era in natu-
ral language processing, where the wisdoms of old would meet the machines
of today, hinting at a bright and prosperous future for neurosymbolic and
structure-aware models of semantic composition. And things did seem to go
that way, at least for a few years; but the advent of data efficient ultra deep
architectures brought large language models into the game. These are unso-
phisticated, wildly over-parameterized, general purpose systems, fed unpro-
cessed texts for weeks on end until they learn to convincingly imitate its use.
With their sheer force, large language models usurped the heir apparent and
condemned structure-aware semantic computation to obscurity. My thesis got
caught in the blast of this change of power, necessitating a clear positioning in
the current state of affairs, and a careful statement of purpose before we get to
the chapter’s content – so here goes.

Parsing is good. Converting raw signals intro structured representations
thereof allows us to standardize their machine processing, and elevates auto-
mated reasoning away from form and into substance. The more well-behaved
the representational format chosen, the more powerful, transparent and veri-

150 Dependency as Modality, Parsing as Permutation

fiable the reasoning can be. The less localized and problem-specific the repre-
sentational format chosen, the more adaptive and better understood the rea-
soning can be. On the basis of these observations, λ calculi make for an ideal
representation format. But choice of format aside, a formal system operating
on formal representations is not prone to implicit biases, latent variables, am-
biguity, inconsistency, or any of the the modern pestilences of the sort. Erro-
neous outputs are the result of bad input or bad programming; there’s always
someone to blame. Specifically in the natural language domain, advancing
the conversion of text into formal representations is promoting accountable
automation of textual processing, and eliminates the anthromorphic delusion
of the ghost in the machine; for to imitate linguistic form is not to under-
stand linguistic meaning. Parsing is therefore only superficially in competition
with large language models, and its seeming obsoletion is just a by-product of
ephemeral and rapidly shifting pop science trends.

That said, machine learning is not bad. Shifting the focus away from the
algorithm and toward the data can often be a reasonable concession in the
automation of complex or labor-intensive tasks, provided that the task is not
risk critical and that no intelligence is attributed to the end system. This is
especially the case if “almost correct” is almost as good as correct, or the prob-
lem being modeled is intractable, making an approximation the best we could
really ever hope for. But employing machine learning has to be thought of
as either a shortcut or an admission of defeat, not as an end goal in itself. In
opting for a machine learning solution, one assigns more faith to a generic
data cruncher in pretending to solve a problem than to oneself in designing a
solution to that same problem.

Interweaving symbolic and subsymbolic reasoning is then the responsible
engineer’s out. Complicated but decipherable components, rich in hierarchi-
cal or recursive structure, requiring or greatly benefiting from formal trans-
parency are to be tackled explicitly. Components that are laborious but un-
interesting, data intensive or intractable are to be isolated and outsourced to
a machine worker. This partition promotes the expenditure of formal effort
where it really is needed, while having it benefit from (rather than compete
with) the high horsepower of brute force statistical machinery. In this here con-
text, I’m claiming that large language models should be treated not as a sub-
stitute, but as complementary to logic-based systems. This is exactly the route
we’ll follow in this chapter, deviating from the original plan in going not from
structures of form to vectors of meaning, but from vectors of form to structures
of meaning. In practical terms, we’ll go through the hoops of designing and
implementing a formally disciplined but accurate and robust wide-coverage
parser, a neurosymbolic architecture aimed at substructural logics of the linear
lineage, instantiated here for LP♢,□ and trained on Æthel.

Learning to Prove 151

13 The Categorial Parser

A high-level conceptualization of the categorial grammar parser should make
for a good starting point. In the infancy of categorial grammars, the parser
would be thought of as nothing other than a lexicon and a theorem prover:
the lexicon enumerating any and all the possible type assignments for each
word, the theorem prover exhaustively iterating the combinatorial space of
assignments to produce all possible proofs for each possible assignment (Fig-
ure IV.1).

w0 . . . wn

Lexicon

t0
0 | t1

0 ...tp
0 . . . t0

n | t1
n ...tq

n

×

t0
0 . . . t0

n

t0
0 . . . t1

n

...

tp
0 . . . tq

n

Theorem
Prover

{p0. . . pk}

Figure IV.1: The archetypical categorial grammar parsing pipeline.

Obviously, this setup hits a brick wall in the sheer complexity of real hu-
man language. As we have discussed in earlier chapters, a type system enact-
ing a strict grammar logic is not just hard to design, but also entails a pro-
hibitively ambiguous type lexicon. Even if the theorem prover is perfectly
optimized, the architecture will become bottlenecked at its input. The total
number of assignments to consider in a sentence increases exponentially with
its length, so even a minor increase in the average number of types per lexical
key will have a high impact in processing time. At the same time, a fixed lex-
icon is a severely limiting factor, as it effectively forbids processing sentences
containing unseen lexical entries (i.e. in cases of a 〈word, type〉 pair missing
from the lexicon). Relaxing the structural properties of the type system to ease

152 Dependency as Modality, Parsing as Permutation

lexical pressure is not a panacea either. With the parser becoming increasingly
ambiguous, more possibilities become accessible during search, and putative
proofs become harder to reject. From the implementer’s perspective, lexicon
and grammar are not synergistic but in conflict with one another, and a middle
ground must be found for them to play together peacefully.

For the categorial program to come to fruition, these very real problems re-
quire equally real solutions. The practitioner must often resort to tricks aimed
at compressing or efficiently navigating the enormous search space. The mod-
ern pipeline commonly outsources lexical disambiguation to a statistical com-
ponent, referred to as the supertagger. The supertagger is tasked with ranking
the possible assignments to a single key, given its context of appearance. As-
signments are ranked according to their likelihood, in turn approximated on
the basis of some training data. Depending on the quality and speed of the sta-
tistical estimator employed, the candidates returned are truncated depending
on some threshold likelihood or by their count. This (partially) sidesteps the
explosive combinatorics of considering all potential assignments, setting an
upper boundary to the cardinality of the parser’s input. The parser may also
be sped up by allowing yet another statistical model to guide its actions any-
time it hits a decision point. As with all real solutions, perfect is unattainable;
this time/space efficiency usually comes at the cost of approximation errors
that translate to foregone rigidness, correctness and/or coverage. The strategy
we’ll follow does not challenge this general model, but contributes some new
insights to the operationalization of its components.

A foreword before we get to it: I imagine a crash course in machine learn-
ing to be redundant in the current day and age. In any case, my intention is to
help the purists make sense of what’s going on, yet without obfuscating the
implementation from fellow hackers. To that end, I’ll try keep the gory techni-
cal details contained and separate from the high level, abstract descriptions. I
hope the result is sensible and inclusive.

14 Supertagging

A supertagger is a statistical model, a parametric function fθ tasked with pro-
ducing the most likely type assignment sequence t0:n := t0 . . . tn for a given
sentence w0:n := w0 . . . wn.

fθ(w0:n) ≈ argmax
t0:n

p(t0:n |w0:n, θ) (IV.1)

To do so, it should in theory approximate the probability of a type assign-
ment sequence conditional on the input; in other words, feeding fθ with any
element of the product space Lk should implicitly produce a total order over
the product space U k, where L the set of words in the language, U the type
universe, and k ranging over N. If that looks stupidly intractable, it’s because
it is. Both domain and codomain are practically infinite: regardless of what

Learning to Prove 153

the cardinality of L and U are, the number of combinations between different
sequences thereof quickly exceeds our current estimates for stars in the uni-
verse as the sequence length increases. Put simply, no amount of sample data
would ever be able to overcome the problem’s inherent sparsity and allow for
a direct attempt at an approximation. Therefore, in practice, some truncations
and independence assumptions are necessary in how we choose to formulate
the sequence-wide conditional assignment probability:

p(t0:n | w0:n) (IV.2)

The decomposition of the seemingly innocuous (IV.2) will basically monopo-
lize this section, because a choice of assumptions and truncations is a prereq-
uisite for us to even contemplate the model’s implementation. Each choice
can (and will) have a deep impact on the model’s performance, most no-
tably in phenomena inhabiting the more remote regions of the probability
density function’s landscape. As a corollary, each choice will alter how suit-
able a model is to one single grammar depending exactly on how that land-
scape looks. This last fact seems to have largely been dismissed by the broader
practitioner community, who treat the problem with consistent indifference,
changing the viewing lens only according to the quirks and fashions of con-
temporary machine learning standards. We will shamelessly fall into the same
last trap, but in our downfall we will at least be conscious of the intellectual
and ideological roots the earlier chapters have established; those of revealing
structure previously hidden, and paying that structure its due respect.

14.1 A Brief History of Supertagging

To actually perceive the structure, we must first notice its absence – therefore
(and for maintaining suspense), we will first outline the short but dense his-
tory of supertagging, and sketch out the paradigm shifts it has undergone
throughout.

14.1.1 Origins

Supertagging (both the term and the idea) is due to the early insights of Joshi
and Bangalore [1994]. The two correctly pointed out that, for a strongly lexi-
calized grammar (in their case, a tree adjoining grammar), assigning the cor-
rect grammatic descriptor, or supertag (in our case, a type), to each word in
a sentence amounts to almost parsing, and that even just weeding out some
of the erroneous assignments significantly facilitates parsing. Early literature
was characterized by an almost single-minded attachment to localized com-
putation, the justification being that supertagging must remain localized for
it not to become “too much like parsing” [Bangalore and Joshi, 1999]. With
the benefit of hindsight, we can see this for what it was: an attempt to justify
a pragmatic consideration, and an artifact of the times, with the scene then
largely dominated by window-based models.

154 Dependency as Modality, Parsing as Permutation

A so-called unigram model assumes full independence between subse-
quent words, and (IV.2) boils down to:

n

∏
i

p(ti | wi) (IV.3)

where each local conditional can be estimated on the basis of corpus frequen-
cies. Despite competely breaking apart sequential sparsity, this formulation is
not much good on its own either; rarely occurring lexical keys hardly provide
sufficient data for an empirical distribution to be extracted. As a solution, plain
part of speech tags would find use as an intermediary, i.e. wi would in practice
be substituted by posi, which would in turn be supplied by an external tagger.
The resulting model is, alas, too simple to find real use: the assumptions made
are exceedingly naive, and lexicalization is heavily bottlenecked by the coarse
and undescriptive part of speech tags; we need to do better.

Invoking Bayes’ rule and factoring out the denominator has (IV.2) rewrite
to the proportionate quantity:

∝ p(w0:n | t0:n) p(t0:n) (IV.4)

Extending the context to a window of size κ, allows local decisions to excert
direct influence to the next κ predictions (and thus indirectly affect all future
ones). This requires approximating the contextual probability p(t0:n) as:

p(t0:n) ≈
n

∏
i
(ti | ti−κ:i−1) (IV.5)

Going one step further and making the assumption that the emission probability
p(w0:n | t0:n) is position-separable and independent allows its rewrite to:

p(w0:n | t0:n) ≈
n

∏
i

p(wi | ti) (IV.6)

Putting (IV.5) and (IV.6) together, we get an approximation to (IV.2) that is bla-
tantly wrong. Nevertheless, it is also workable, in having efficiently circum-
vented sparsity, adequate, in having accounted for the very important axis of
output-to-output interactions, and practical, in allowing a tangible implemen-
tation as a hidden Markov model. Simple structural constraints would then be
applied to filter out candidate predictions on the basis of admissibility criteria
related to the shape and content of the supertag as well as the surrounding
lexical context.

14.1.2 CCGbank and the Original Sin

The problem garnered attention and gained significant traction with the re-
lease of the CCGbank, the large size and gold standard nature of which of-

Learning to Prove 155

fered an excellent test bed for molding the first generation of supertaggers.
The first incarnation of a combinatory categorial grammar supertagger was
the original work of Clark [2002]. The model diverged from the implemen-
tation of Bangalore and Joshi [1999] in opting for a larger window size and
foregoing the contextual effect of output-to-output dependencies. In that set-
ting, and for a window of size 2κ + 1, (IV.2) takes the form:

n

∏
i

p(ti | wi−κ:i+κ) (IV.7)

The model would materialize as a log-linear feature weighter trained as a
maximum entropy estimator. The input would include several sparse heuris-
tics, including morphological features and boolean context predicates, allow-
ing a partial soft bypass of the fixed-key lexicon.

Novelty and ingenuity aside, the work set a number of precedents; some
of those, reasonable as they may have been at the time, have since permeated
through the problem statement, becoming de facto practices rather than con-
scious design decisions. Structural constraints were dropped, in part because
they are less straightforward to deduce in frameworks other than tree adjoin-
ing grammars; they never found their way back into the mainstream, athough
admittedly they never were particularly sophisticated to begin with. This step
away from structural discipline is exacerbated by having also dropped the
supertag-to-supertag dependencies, since the model now has no chance of
learning how to statistically filter out mutually incompatible assignments ei-
ther. To counteract the problem, the paper opted for a yet more radical so-
lution: abandoning the sequential formulation (i.e. no more argmaxing over
the product) in favor of a multitagging approach (i.e. returning all categories
whose local probability exceeds some fixed ratio of the highest ranked can-
didate). This was shown to greatly improve coverage (by outsourcing heav-
ier duty to the parser), but has to be understood as a practical overcorrec-
tion, an emergency measure to sidestep the model’s inherent disregard for
output-level sequential interactions. The limitation is acknowledged by Clark
and Curran [2004], and an attempt at resolution is offered by Curran et al.
[2006]. There, the forward-backward algorithm is employed to efficiently cal-
ibrate the probability of an assignment (in the multitagging setup) as the sum
of all sequential assignments containing it:

p(ti | w0:n) = ∑
t0:i−1,ti+1:n

p(t0:i−1, ti, ti+1:n | w0:n) (IV.8)

This does reinstate a notion of output-to-output dependencies in the form of
estimated posteriors, but computational considerations have diffused the po-
tential for widespread adoption in later frameworks. Finally, rare supertags,
which were particularly problematic or near impossible to learn, were found
to have very limited impact on overall coverage; this set the grounds for their
statistically near-inconsequential erasure, a choice that gradually became in-

156 Dependency as Modality, Parsing as Permutation

grained as a mandatory step of data sanitation and preprocessing.

14.1.3 Distributed Word Vectors & Neural Networks

The advent of word embeddings and the gradual substitution of sparse fea-
tures with continuous vectors paved the way for the incorporation of arti-
ficial neural networks. Lewis and Steedman [2014] employed a collection of
pretrained embeddings combined with a window-based two-layer network
in a “semi-supervised” manner (in today’s jargon, a pretty much fully su-
pervised separable convolution), to a dual effect. On the one hand, the pre-
trained embeddings offered a natural generalization from the fixed size lex-
icon to the (still fixed, but much larger) set of pretrained‘ embeddings, sin-
gle handedly obsoleting the long standing problem of tackling rare and un-
seen words [Thomforde and Steedman, 2011; Deoskar et al., 2011, 2014].
On the other hand, the parameter-sharing convolution improved the accu-
racy/ambiguity ratio and overall efficiency of the (then standard) log-linear
supertagger of Clark and Curran [2007]. Unlike before, words were allowed
to associate to any supertag, regardless of whether or not a 〈word, supertag〉
pair was observed during training; the lexicon thus turning from a hard im-
perative to a soft guideline. Additional experiments involving a conditional
random field were mildly successful, but abandoned due to the prohibitively
slow decoding – yet, it was obvious to the people involved that something crit-
ical was amiss. Xu et al. [2015] took the approach a step further by utilizing a
simple recurrent network (RNN), and, in doing so, claimed to sidestep the lo-
cality of the previous neural model. To escape the unidirectional constraint of
the classical recurrent network (or perhaps out of force of habit?), they contin-
ued incorporating window-based features that provided a minimal amount of
right context κ, thereby rewriting (IV.2) as:

n

∏
i

p(ti | w0:i+κ) (IV.9)

And while their approach does indeed offer a wider receptive field, it is fo-
cused solely on the input side; output interactions are still nowhere to be seen.

14.1.4 Autoregressive Modeling

By now (and despite earlier aphorisms), it is becoming increasingly evident
that nothing deep or spiritual restricts supertagging to remaining local, as ad-
vancements in machine learning are progressively offering more opportuni-
ties for fast and efficient incorporation of ever wider context. But the absence
of output-to-output dependencies remains unresolved, despite them being a
recurrent theme in the literature. This changes with the work of Vaswani et al.
[2016] who score two major points with their resourceful use of long short-
term memory networks (LSTM). First, they replace the simple recurrence of
Xu et al. [2015] with a bidirectional one (thus allowing unbounded left- and

Learning to Prove 157

right- input interactions) – an idea explored in parallel by multiple contempo-
rary works [Ling et al., 2015; Xu et al., 2016; Lewis et al., 2016, inter alia]. More
importantly and in addition to that, they introduce an intermediate recurrence
that is to serve as a supertag-level language model, fusing the prediction his-
tory with the input context to produce each local prediction. The two together
alter (IV.2) into a version far more elaborate than previous proposals:

n

∏
i

p(ti | t0:i−1, w0:n) (IV.10)

Under a modern lens, this is akin to a somewhat idiosyncratic implementa-
tion of an autoregressive sequence-to-sequence model, with the decoder ben-
efiting from perfect alignment between input and output tokens. Unlike prior
work, no occurrence threshold was imposed, and explicit evaluations over
sparse lexical relations were provided. The added expressivity and signifi-
cantly wider receptive field granted LSTM models the state of the art badge,
which was to remain uncontested for a surprisingly long two human years1.

14.1.5 Superwhat?

More than just a testament to the LSTM’s strengths, this momentary pause
makes for a discontinuity in the velocity of progress; not because people sud-
denly lost interest in supertagging, but rather because machine learning ar-
chitectures and their applications had slowly become exhausted. This coin-
cides with a stall across NLP in general, and a concurrent paradigm shift;
specialized models started becoming outfashioned, and improvements would
no longer be enabled by domain expertise and task-specific engineering, but
rather by higher quality unsupervised and semi-supervised training routines
over larger and larger models. A case in point is the next major landmark, in
fact reached by a structurally simplified model [Clark et al., 2018], a plain
bidirectional sequence encoder using the factorization:

n

∏
i

p(ti | w0:n) (IV.11)

Despite taking a step backwards in terms of structural sophistication, the model
managed a performance leap comparable to that of switching from a separable
neural function to a recurrent one (see Figure IV.2), all by “simply” incorporat-
ing multiple tasks and losses in its training loop. The same paradigm is today
more dominant than ever, and has pushed conventional NLP outside of the
spotlight, putting an end to an exciting but short golden era.

1Approx. three centuries in machine learning years.

158 Dependency as Modality, Parsing as Permutation

2002 2018
90

91

92

93

94

95

96

Clark [2002]

Clark and Curran [2004]
Lewis and Steedman [2014]

Xu et al. [2015]

Vaswani et al. [2016]

Lewis et al. [2016]

Clark et al. [2018]

Publication Year

A
cc

ur
ac

y
(g

re
ed

y)

Figure IV.2: Supertagging performance in the CCGbank historically.

14.2 Constructing Types

The supertagging architectures reviewed are, from first to last, variations on
a theme. Regardless of whether the underlying statistical machinery is a hid-
den Markov model, a maximum entropy model, a neural sequence tagger or
a sequence-to-sequence transducer, a single commonality characterizes them
all: they start from the assumption of a finite codomain. More than that, they
don’t just assume but require that the zipfian tail of lexical type sparsity is prac-
tically irrelevant for the corpus, and, by extension, for language at large. In
other words, they require that most of the probability mass of type occurrences
is concentrated around a central region of a few common types, and that ex-
ceptionally rare types are nothing but statistical artifacts which can safely be
ignored. This bias is not to be mistaken for a vice, nor for a deeply motivated
ruling; it is a practical compromise that became an unwritten rule, similar to
the (once proclaimed as necessary) locality of supertagging – a notion since
abandoned and forgotten with minimal remorse and deliberation as soon as
technology allowed. The issue is really quite shallow: statistical models have
always had a very hard time dealing with under-represented samples (in our
case, supertags), and correctly recognizing items outside the training data is
an open problem with no general solution.

That is not to say the compromise is an unjust one; its heedless prolifera-
tion does come with two major side effects, though. One, it forces parsers to

Learning to Prove 159

give up on potentially rare syntactic phenomena, at least when those mani-
fest through unique and uncommon supertags. Even though a parser should
in principle be able to handle any valid supertag (regardless of its statistical
properties), the a priori exclusion of rare ones corresponds to an externally
imposed restriction to its generalization. In other words, exactly those diffi-
cult phenomena that would benefit from the linguistic expertise of a robust
parser are to be discarded in the first place. There’s a bit of a self-fulfilling
defeatism here: we’ll always only parse what we can parse, sure, but we’ll
never be able to parse what we won’t ever try to parse. Two, in becoming part
of the first page of the (as of yet unwritten) supertagging bible, the concept
implicitly reinforces the belief that grammars not following a distribution of
occurrences similar to (or denser than) that of the CCGbank are practically
unusable. A densely featured type system and its overpopulated lexicon have
become demonized as pitfalls we have to steer away from. This is actually
quite the contradiction – we came up with supertagging to treat lexicalized
grammars, but we won’t push lexicalized grammars further because of a lin-
gering fear that our supertaggers are not good enough; lexicalization is good,
but only as long as it’s not too lexicalized...

Epistemological ramblings aside and back to reality, the type grammar
we have developed is not among the lucky few. Æthel is way sparser than
the CCGbank, containing five times as many types, while test samples with
at least one rare type (i.e. a type with less than 10 occurrences in the joined
train and dev subsets) appear four times as often as in the CCGbank (14.5% vs
3.5%). Disregarding rare types is making ourselves content with an idealized
(unachievable) peak sentential parsing accuracy of 86.5%, which is far from
an aspiring start. Worse yet, these statistics are suggestive of a vast type uni-
verse, of which we likely have a observed only but a glimpse through the lens
of Æthel. In practical terms, we messed up, and no existing technology will
save us now. But, as the proverb goes, “necessity is the mother of invention”
and we’re definitely in need here, so we may as well invent something.

In reality, what we need is less of an invention and more of an observa-
tion. The important thing to observe is that supertags (be them combinatorial
categories, type-logical types or anything resembling them) are not ad hoc,
opaque and dissimilar units, but highly regular, transparent and decompos-
able structures, made of a small set of primitives and the operations that piece
them together. In our setup, complex types are the result of type forming op-
erators applied to “smaller” types, the smallest types available being atomic
propositions; recall the (strategically placed) exercise of Figure I.30. This in-
sight is not a particularly deep one; it won’t come as a surprise to anyone
that has even superficially dabbled in the joys of algebraic data types, context-
free grammars, inductive tree structures, or any sort of the hierarchical recur-
sions common in computer science. Theoretically unsurprising as it may be,
it offers an interesting applied perspective: why teach a statistical model how
to disambiguate (i.e. choose) between some candidate assignments (however
many), when we could instead teach it to construct (i.e. inductively describe)

160 Dependency as Modality, Parsing as Permutation

the most suitable assignments instead? A system able to consult the present
linguistic context in order to construct well-formed and well-motivated types
would amount to the first ever specimen of a new species: a supertagger with
an unrestricted codomain. We’ll call this species of supertaggers constructive.
This perspective is in a sense orthogonal to the transition from fixed, corpus-
extracted assignment frequencies to word vectors. Whereas one generalizes
over rare and unseen items in the first coordinate of lexical entries (〈word,
type〉 pairs), the other does so over the second. The two, combined, lift the
closed world assumption, paving the way for the last supertagger we’ll ever
need – one able to reliably predict the correct type (be it rare or unseen) for
any word (be it rare or unseen).

14.3 Supertagging as NMT
The first attempt at a constructive supertagger is described in detail in Ko-
gkalidis et al. [2019]. Like all first attempts, it is characterized by a degree of
naivety combined with an overeager execution. Types are first viewed as the
corresponding formula trees, and then traversed in a depth-first left-first fash-
ion (i.e. read off in Polish notation). Each type thus yields a type-word, viewed
as the produce of a tiny recursive grammar (a context free one), the alphabet
of which would be the union of atomic formulas and logical connectives. A
sequence of types is represented as the concatenation of the sequentialized
types, each type-word separated from the next by an (in hindsight unecessary)
special alphabet token. This expansion of a type-word into multiple symbols
inadvertently breaks the input-to-output alignment; words are no longer as-
sociated to a single output symbol, but rather a sequence thereof. As expected,
this means that a sequence tagger is no longer a fitting backend for our exper-
imental ventures. Thankfully, the two biggest buzzwords of machine learning
in 2018 are both surprisingly relevant here.

14.3.1 Buzzwords

Neural Machine Translation Neural machine translation (NMT) is the mod-
ern paradigm to machine translation, the task of automatically translating text
from some source language to a target one. The term made its explosive first
appearance halfway through the last decade, taking the field by storm [Kalch-
brenner and Blunsom, 2013; Cho et al., 2014b; Bahdanau et al., 2015]. The
dominant approach rests on a sequence-to-sequence neural model [Cho et al.,
2014b; Sutskever et al., 2014], which consists of two parts: a sequence en-
coder, which builds a contextual representation of the input sequence, and a
sequence decoder which uses the input representation to iteratively produce
the output sequence on a token by token basis. For an input sequence x0:M
mapped to an output sequence y0:N , this corresponds to a conditional lan-
guage model trained to maximize

p(yi | y0:i−1, x0:M) (IV.12)

Learning to Prove 161

The above conditional is identical to (IV.10); in fact the supertag language
model of Vaswani et al. [2016] is a degenerate case of neural machine transla-
tion, where y is t and x is w, and M and N coincide. This is not a one-off, but
rather an instace of a broader trend, referred to as generalized machine trans-
lation. The generalized part stems from the fact that neither the source nor
the target language are in any way constrained to being natural (or human)
languages; either of the two (or both!) may well be artificial languages. The
actually interesting bit is that they don’t actually even need to be languages
per se; any complex data structure that can be canonically traversed into an
unambiguous sequentialization makes for a valid input/output. Vinyals et al.
[2015] explore the idea in training a sequence-to-sequene parser by directly
translating the input sentence into a linearized constituency tree; the model
is surprisingly accurate in learning both how to create valid trees (only oc-
casionally producing malformed output), and which valid tree to create for
a given sentence (with an accuracy comparable or matching previous estab-
lished models).

The paradigm per se is rather bland, making no assumptions about the
output structure and requiring little to no task-specific tuning. For the exact
same reasons, it is also highly appealing, and a good starting point for ex-
perimentation – we can just apply it virtually unchanged to the task at hand.
In our domain, the goal sequence y would be the sum of symbols together
forming our sequence of type-words, and x will be none other than the sen-
tence itself. Using the doubly indexed si,j to denote the j-th symbol of the i-th
type (symbol enumeration following the depth-first left-first traversal of the
formula tree), the conditional becomes:

n

∏
i

||ti ||

∏
j

p(si,j | sk,: : k < i, si,k : k < j, w0:n) (IV.13)

where ||ti|| the number of symbols of type-word i. We will refer to this oper-
ationalization as a symbol sequential supertagger. Note that the above is essen-
tially an expanded version of (IV.10), in the sense of containing intermediate
evaluations in between full supertags. This view allows drawing a parallel
between type-words made of primitive symbols and words made of subword
units [Sennrich et al., 2016]. The two share the same high-level purpose of im-
proving “translation” to rare (type-)words, even though the structural decom-
position of types is much more regular and consistent than the morphological
decomposition of words.

Neural Attention Encoding the input sequence to a fixed length vector is es-
sentially lossy neural compression. The longer the input and output sequences
are, the more this compression may prove catastrophic in capturing long range
dependencies [Cho et al., 2014a]. As an alternative, attention-based models
circumvent the need for compression by simply building a contextually in-

162 Dependency as Modality, Parsing as Permutation

formed representation of the full input, distributed evenly among its tokens
(one representation per sequence element). These representations can be dy-
namically weighted and summed, yielding a distinct view of the same struc-
ture based on an external aggregation context (a query). Attention has its roots
in neural image processing [Larochelle and Hinton, 2010; Mnih et al., 2014,
inter alia], but its application to language was essentially the catalyst that set
the field ablaze [Bahdanau et al., 2015].

Even though attention was originally used as an enhancement on top of
RNNs, the code of conduct today is basically attention only. The instigator of
that paradigm shift was the transformer architecture [Vaswani et al., 2017],
which by now enjoys an unprecedented pop status (saving me the hassle of
having to regurgitate yet another “transformers explained” pamphlet). In high
level terms (and consciously oversimplifying), the transformer is a heteroas-
sociative memory mechanism. It builds three distinct representations for each
sequence token: queries dictate what each token looks for, keys dictate what
each token associates with, and values correspond to memory storage. A dis-
tance metric (commonly a scaled dot-product) is used to induce a weighting
over the keys matrix for each query vector; we may say that queries attend
to keys. The resulting weights are normalized to sum to one, and act as mul-
tiplicative factors in the weighted averaging of the values matrix, yielding a
vector acting as a distinct evaluation of the full sequence for each query. This
basic operation is trivial to parallelize, both across tokens within the same se-
quence, as well as across independent sequences, thus allowing an efficient
many-to-many message passing contextualization that can be stacked multi-
ple times in depth for extra expressivity. Using this as a decoder is just as easy,
since queries may come from a different sequence than keys and values, pro-
vided their dimensionalities (not the counts!) match. The only requirement
is a masking strategy that disallows autoregressed tokens from attending to
their future while training (since that would be cheating). This is significant
for training in the NMT setup, as it circumvents the linear temporal delay of
the RNN by trading it for the quadratic memory cost of the attention matrix
(quadratic because all tokens must attend to all tokens); the trade-off does not
carry through to inference, where one has to suffer both the temporal delay
(since there’s no oracle supplying the future anymore) as well as the memory
penalty.

14.3.2 Implementation

Our problem is ripe with long distance dependencies. Moreover, these are not
confined to being only between encoder-decoder token pairs, but may also
occur within decoder token pairs alone. Consider that the misalignment be-
tween input and output means that we must consult the full input sequence
at each decoding step, while the structurally liberal type logic means that cues
to the current step may be found locally (within the same type), or multiple
types (and thus even more steps) away. For this reason alone, the transformer

Learning to Prove 163

seemed like a good candidate architecture. Adhering to evidence that pre-
trained language models seem to benefit either side of the encoder-decoder
pipeline, the encoder would consist of a Dutch version of ELMo, the de facto
language model at the time [Peters et al., 2018; Che et al., 2018]. To account
for domain adaptation without having to compute the costly gradient updates
for the over-parameterized language model, a single transformer encoder was
used to contextualize ELMo’s precomputed representations. The encoder was
connected to a tiny transformer decoder of two layers, allowing unhindered
access to the full input and all previous outputs.

14.3.3 Experiments & Results

Training The model was trained with teacher forcing, i.e. predicting the cur-
rent step assuming perfect rather than predicted (noisy) context. For regular-
ization, and in order to discourage the model from memoizing common type
patterns, the Kullback-Leibler divergence was employed as the loss function,
computed between the model’s predictions and the ground truth, with 20% of
the probability mass evenly distributed across the non-true entries (basically
a naive implementation of the label smoothed cross entropy loss [Szegedy
et al., 2016]). The training data would consist of samples counting less than
20 words, pulled from the version of Æthel then current. This historical ver-
sion of the dataset diverges considerably from its present incarnation, the core
difference being the use of LP as the type logic, with an informal decoration
of the implication standing for today’s modalities. Despite formal and rep-
resentational divergences, the distribution of types is practically identical in
between the two versions; as a fun trivia, only about 85% of the total unique
types were present in the training split used. Modulo exact numbers, insights
gained from this past venture do carry over to the present.

Evaluation Unlike work in CCGbank, evaluation cannot be done on a com-
parative basis, due to the absence of established baselines1. Cross-framework
comparisons are also irrelevant due to the vastly different problem formula-
tions (i.e. different linguistic framework, corpus, language); to drive the point
across, consider that accuracy was measured over a set of 5 700 types, which
is 1 order of magnitude above CCGbank’s 425 non-thresholded categories.
What’s worth exploring instead is (i) the architecture’s potential at supertag-
ging, and (ii) its ability to learn reasonable generalizations beyond its training
data. To that end, we may view constructive and discriminative supertagging
not as two orthogonal approaches, but as the extreme points of a continuum.
At the intermediate points between these extremes, there exist alphabets con-
taining composite symbols that correspond to notational shorthands for the
most common type and sub-type patterns. As more of notational shorthands
are introduced, the target output’s length is significantly decreased, but the

1There’s basically noone to beat.

164 Dependency as Modality, Parsing as Permutation

model is exposed to progressively less constructions of full types. This be-
comes useful in approximately mapping the landscape between a fully con-
structive supertagger and a fully discriminative one.

On a purely numerical basis, the results are not astounding. Constructive
accuracy lies at a disheartening 88%, which is far from sufficient for down-
stream parsing. What is intriguing, though, is that accuracy gradually declines
with the introduction of notational shorthands, falling all the way down to
87.2% with the eventual collapse to a discriminative autoregressive tagger.
Let’s repeat this once more: obfuscating type structure hinders performance.
The story looks even more promising when it comes to the far end of the zip-
fian tail: 19.2% of type assignments involving unseen types are correctly pre-
dicted, as are 45.7% of those involving rarely seen types; these plunge to an
unavoidable 0 and 23.9%, respectively, with the transition to a discriminative
setup. Furthermore, not a single type is malformed, indicating that the gram-
mar of type formation is indeed learnable, even when incorporated within
a challenging sequence labeling task. Raw numbers aside, the results suffice
to deem the experiment an objective success: we generated concrete evidence
that a full dismantling of the lexicon is not just possible but in fact also beneficial
for supertagging a sparse type grammar.

14.3.4 Insights & Observations

Advantages The prime advantage is the acquisition of rare and unseen su-
pertags, which is a major accomplishment in its own right. Secondary advan-
tage #1 is the unintended provision of trained representations for zeroary and
n-ary primitives1, either contextual (i.e. as provided by the decoder) or stand-
alone (i.e. as provided by the embedding layer). In the first case, they enact
contextual representations that live in the disputed zone between the input
sentence and the output derivation, suggesting new routes to parsing – we’ll
see about that in Section 15. In the second case, they may find use as high-
granularity supertag representations, allowing the dynamic representation of
any valid supertag, akin to character-level embeddings for a character level
model – supertag representations could then find use in downstream applica-
tions as an extralingual input [Kasai et al., 2017]. Secondary advantage #2 is
the possibility for a hyper-articulated heuristic search during decoding, as we
are now able to branch off to different sequences of assignments by sampling
not only across types, but also within them. A different symbol might dras-
tically alter and affect the future of the decoding, locally within the current
type or globally across the full sequence. Other than potentially improving
the sample efficiency of beam search, this can further be used to strictly en-
force structural constraints, as we will also see in Section 15.

1Replace with appropriate framework-specific terminology, e.g. atomic propositions and log-
ical connectives, atomic categories and categorial combinators, etc.

Learning to Prove 165

Limitations With the benefit of hindsight, it is also clear the approach suf-
fers from a series of limitations. First and foremost, there’s the superficial fact
that overall accuracy is far from groundbreaking, pointing to the need for ar-
chitectual search and hyper-optimization adjustments. A deeper issue is the
computational penalty of the naive application of the transformer; unfolding
supertags to primitive symbols has added a second product in the formulation
of (IV.10). The sequential decoding inherited from NMT means that this extra
product excerts a multiplicative influence to decoding time, made quadratic
in terms of memory footprint. The model is computationally expensive, slow
and bulky to optimize. At the same time, we have not fully kept our initial
promise; structure may have been revealed, but it was not paid the respect
due. Supertags were brutally leveled into one-dimensional decals, their orig-
inal treeness reflected neither in the representations nor in the structural in-
ductive bias of the learning machine. We still have to do better.

14.4 Geometric Constraints

Prange et al. [2021] notice the problem and seek to resolve it by explicating the
categorial tree structure. Their methodology abides by the encoder-decoder
paradigm, but with one crucial, task-specific adaptation: the decoders experi-
mented with are tree recursive, making them a far better fit for addressing the
problem at hand. The general setup has the encoder build a contextualized
representation for each word in the input, which is to serve as the initial seed
for the decoding of the respective supertag; the decoder is then independently
applied among all trees. Two decoders are considered; a tree-shaped variant
of the gated recurrent unit [Cho et al., 2014a] and a positionally informed
feed-forward network. The first recurses along the tree structure, generating
each local symbol dependent on its direct ancestor. The second sums the ini-
tial seed with the projection of a feature vector describing the local position
and its ancestry (both fixed choices among some predetermined possibilities).

The approach makes for a well motivated step in the right direction. The
new formulation completely eliminates the burden of how trees are constructed,
allowing the model to focus on which trees to construct. At the same time, the
decoders considered are now token-separable, i.e. they can be applied in par-
allel across both sequences and trees. Where previously we would have to per-
form ∑n

i ||ti|| decoding steps, this now shrinks to maxn
i depth(ti) – practically

a constant, and a reduction of at least one order of magnitude. Furthermore,
words and supertags are now structurally aligned, relieving the model from
having to learn the implicit soft alignments necessary at each decoding step.
On the practical side, numbers are significantly improved across the board
(except for the far end of the zipfian tail), making the model a real alternative
to the discriminative status quo. This becomes even more relevant considering
how easily the setup lends itself to the multitagging paradigm (an insight that
escaped the authors), as multiple trees may be obtained by following along

166 Dependency as Modality, Parsing as Permutation

the path of the factorization (modulo accounting for depth-width smoothing):

p(ti | w0:n) =
||ti ||

∏
j

p(si,j | si,k : k ∈ ancestors(j), w0:n) (IV.14)

All these merits come, however, at a heavy price: in parallelizing decoding
across trees, the architecture loses the ability to model auto-regressive interac-
tions between output nodes belonging to different trees; interactions that can
be crucial at the granularity scale we are now at. The task is morally reduced to
a sequence classification once more, albeit now with a dynamically adaptive
classifier; we are back at (IV.11), except for each local decision being elaborated
according to (IV.14).1

The sequential and tree-biased approaches seem to be at odds, but the ten-
sion between them is highly artificial. Both merely suffer from the naivety of
conflating problem-specific structural biases and general purpose decoding
order: one forgets about tree structure in opting for a sequential decoding,
whereas the other does the exact opposite, forgetting about sequential struc-
ture in opting for a tree-like decoding. What we need to do is disentangle
the two concepts, observing first that the output type is neither Seq[s] nor
Tree[s] but Seq[Tree[s]]. And that’s it. Having done that, the work that remains
is of purely technical nature; we just need to come up with the spatiotemporal
dependencies that abide by both structural axes, and then a neural architec-
ture that can accommodate them. The choice of a temporal (decoding) order
is easy: Prange et al. [2021] make a very compelling case for depth-parallel
decoding, given that it’s insanely fast (we are not temporally bottlenecked
by left-to-right sequential dependencies) but also structurally elegant (trees
are only built when/if licensed by non-terminal nodes, ensuring structural
correctness virtually for free). Sticking with depth-parallel decoding means
necessarily foregoing some autoregressive interactions: we certainly cannot
look to the future (i.e. tree nodes located deeper than the current level, since
these should depend on the decision we are about to make), but neither to
the present (i.e. tree nodes residing in the current level, since these will be all
decided simultaneously). This leaves some leeway as to what could constitute
the decision context, and here’s where we can improve upon prior work: in
adding the missing structural dependencies. The maximalist position is noth-
ing less than the entire past, i.e. all the nodes we have so far decoded. Crucially,
this abolishes conservative ancestry biases, establishing “diagonal” structural
interactions between autoregressed nodes without requiring them to be di-
rectly linked to one another, or even share the same ancestral heritage (belong

1Interestingly, Liu et al. [2021], who concurrently explore a similar operationalization with
tiny word-level parsers, consider this a strength, arguing that it helps counteract error accumula-
tion.

Learning to Prove 167

wa

a1

a3

a7a6

a2

a5a4

wb

b1

b3

b7b6

b2

b5b4

wc

c1

c3

c7c6

c2

c5c4

. . .

Figure IV.3: Abstract canvas of a constructive supertagger’s I/O structure.

to the same tree). The liberal position casts (IV.2) to:

n

∏
i

||ti ||

∏
j

p(si,j | p(s:,k : level(k) < level(j), w0:n) (IV.15)

The point might seem stretched but it is really just subtle. If you’re hav-
ing trouble following along, take a look at Figure IV.3, displaying an abstract
(partial) canvas of the constructive supertagger’s input/output space, where
wa, wb, wc are the first three words of the input sequence, with correspond-
ing goal trees a, b and c, the nodes of which are enumerated according to a
depth-first left-first traversal. Focusing on autoregressive interactions alone,
the sequential approach we started from would have each node depend on all
nodes to its left and below; without loss of generality, b6 would for instance
depend on all of a, but also b1, b2, b3, b4 and b5, as well as any descendants of
the last two. The tree-biased approach would have each node depend on its
ancestors; for b6, these would be just b3 and b1. The tree-sequential approach
envisaged here has each node depend on all nodes below it; the prediction of
b6 is now informed by the contents of nodes [a/b/c/ . . .]1,2,3. The convention
is that shallow nodes (presumably the easiest ones) are decoded first, unrav-
eling the next layer of the canvas (we won’t need to waste any compute on
predicting, say, b6 if either of b3 and b1 was a terminal symbol), while provid-
ing disambiguation context for deeper nodes (presumably harder) along the
entire sequence.

14.4.1 Geometry-Aware Supertagging

A suggestive operationalization of this novel approach was made public in Ko-
gkalidis and Moortgat [2022, preprint]; we’ll expand upon it here. First off, the
spatiotemporal dependencies we seek to implement do not follow the induc-
tive biases of any run-of-the-mill architecture we may find precompiled in
some machine learning library. The closest paradigm available are graph neu-

168 Dependency as Modality, Parsing as Permutation

ral networks (GNNs), which are essentially the most general class of neural
architectures, suitable for learning on arbitrary graphs and manifolds (points,
sequences, canonical grids, trees – these are all just very specific instances of
graphs: every neural network is a subclass of a graph neural network). GNNs
are usually formulated on the basis of some graph structure, where primitive
graph entries (edges, nodes or both) are iteratively updated in a series of so-
called message passing rounds. The concrete implementation of the messaging
scheme (including what the flow of communication is and how messages are
constructed) are up for deliberation.

In our case, it would be straighforward to add direct messaging compo-
nents that implement exactly the spatiotemporal dependencies described ear-
lier. But this lacks subtlety, making no attempt at exploiting the regularity of
the output space; sure – it may be neither sequence nor tree, but it’s not an
ad-hoc graph either! Computationally, this would not bode very well either;
the number of interactions to compute would be upper bound by the series:

m:=maxn
i depth(ti)

∑
k=0

(
2kn︸︷︷︸

prediction targets

×
(

∑k−1
k′=0 2k′n︸ ︷︷ ︸

context nodes

+ n︸︷︷︸
input length

))
(IV.16)

whose memory footprint grows as O(22mn2), scaling quadratically with se-
quence length and exponentially with twice the maximal tree depth – yikes.
To keep this beast under check, we would do well to utilize the output’s geo-
metric constants, namely the words. A reasonable way to do that would be as
state tracking vectors (fixed both in count and in length). Akin to RNN hidden
states, these shall be iteratively updated by the decoding process, while simul-
taneously reining it in. Practically, each decoding step shall be conditioned on
the current states, with each state (word) informing only the nodes it is asso-
ciated with (the supertag it will decode into) in a one-to-many fashion, i.e. n
parallel messaging rounds, each from a single state to the (maximally) 2k nodes
above. Conversely, after the step has concluded, states will receive feedback
from the nodes last predicted, again respecting word boundaries, now in a
many-to-one fashion, i.e. again n parallel messaging rounds, now from the 2k

freshly decoded states back to the single state they are assocciated with (origi-
nate from). Unlike the naive approach, the setup maintains the word/supertag
alignment while also structurally fusing the input- and output-level interac-
tions sources. Nodes are indirectly informed by all local nodes below, with a
much more endearing complexity of just:

m

∑
k=0

2kn︸︷︷︸
prediction messages

+ 2kn︸︷︷︸
feedback messages

(IV.17)

which now grows as O(2mn).

Of course, something is amiss: the depth-wise intra-tree interactions may

Learning to Prove 169

well be captured, but the inter-tree ones are unaccounted for. In the same
vein as before, we may bypass this by having the state vectors communi-
cate with one another after each local feedback around, allowing non-local
autoregressive context flows. Having this done globally (all words communi-
cating with all words) is certainly feasible and still preferrable to (IV.16), but
suboptimal: it inserts a mn2 memory complexity component (m messaging
rounds in the cartesian product of words). A better alternative can be found
in the dusty scriptures of old: sliding windows. Regulating and thresholding
state interactions according to their relative distance reinstates computational
well-behavedness1, substituting n2 with nκ for window size κ (basically linear
in sequence length) and setting the final memory footprint of the decoder at
O(2mn + mn).

Computational considerations aside, this formulation is also conducive to
learning. Having interactions modulated and bottlenecked by state tracking
vectors reduces the number of statistical confounds accessible to the model,
acting as an implicit regularizer and enforcing a degree of locality to the (oth-
erwise distributed) neural representations. It also justifies a heterogeneous for-
mulation, which would have different graph elements inhabit different vec-
tor spaces. State vectors are recurrent across depth and inter-communicating
across width, thus meriting from high-dimensional representations; with that
in mind, they can initially be supplied by an external high-horsepower en-
coder, solving the initial interfacing with the input sentence. Tree nodes, on
the other hand, encode a decision over a very small vocabulary and are use-
and-forget, justifying a low-dimensional representation. Finally, implement-
ing the forward, backward and horizontal message passing rounds as sepa-
rable, parameter-sharing convolutions repeated both across depth as well as
width reduces the model’s parameter count and provides the inductive biases
needed for strong generalization.

Tree Parallel Decoding Summarizing, the decoding algorithm consists of
the following steps:

i. State vectors are initialized by some external encoder.
ii. An empty fringe consisting of n blank nodes is instantiated, one such per

word, rooting the corresponding supertag trees.
iii. Until a fix-point is reached (there is no longer any fringe):

(a) States project class weights to their respective fringe nodes in a one-
to-many fashion. Depending on the arity of the decoded symbols, a
next fringe of unfilled nodes is constructed at the appropriate posi-
tions.

(b) Each state vector receives feedback in a many-to-one fashion from
the just decoded nodes above (what used to be the fringe), yielding
tree-contextual states.

1Maybe there was something to the locality of supertagging after all.

170 Dependency as Modality, Parsing as Permutation

(c) The updated state vectors emit and receive messages within their
local neighborhoods in a many-to-many fashion, yielding tree- and
sequence- contextual states.

A single iteration of step (iii) over the abstract canvas of Figure IV.3 is pre-
sented in Figure IV.4.

14.4.2 Implementation

The paragraphs to follow detail how the abstract pipeline is executed in prac-
tice. Consider yourself warned: you are urged to skip to the next section if
sensitive to machine learning jargon, or the calendar year in your frame of ref-
erence is greater or equal to 2026 (I expect every single word to be obsolete by
then).

Node Embeddings State vectors are temporally dynamic and of size dw;
they are initialized to h0

0:n ∈ Rn×dw by some external encoder, and are then
updated through the fix-point iteration of three message passing rounds, as
described in the next paragraphs. Tree nodes, on the other hand, are not sub-
ject to temporal updates, but instead become dynamically “revealed” by the
decoding process. Their representations of size dn are computed on the basis
of (i) their primitive symbol and (ii) their position within a tree.

Primitive symbol embeddings are obtained from a standard embedding
table We : S → Rdn that contains a distinct vector for each symbol in the
set of primitives S . When it comes to embedding positions, we are presented
with a number of options. It would be straightforward to fix a vocabulary
of positions, and learn a distinct vector for each. But this is neither inclusive
nor elegant: it imposes an ad hoc bound to the shape and size of tree nodes
that can be encoded (contradicting the constructive paradigm), and fails to
account for the compositional nature of trees. The structure-conscious route
requires noting that paths over binary branching trees form a semi-group, i.e.
they consist of two primitives (namely a left and a right path), and an asso-
ciative non-commutative binary operator that binds two paths together into a
single new one. The archetypical example of a semigroup is matrix multiplica-
tion; we therefore instantiate a tensor P ∈ R2×nd×nd encoding each of the two
path primitives as a linear map over symbol embeddings. From the above we
can derive a function p that converts positions to linear maps, by performing
consecutive matrix multiplications of the primitive weights, as indexed by the
binary word of a node’s position; e.g. the linear map corresponding to posi-
tion 1210 = 11002 would be p(12) = P0P0P1P1 ∈ Rdn×dn . We flatten the final
map by evaluating it against an initial seed vector ρ0 ∈ Rdn , corresponding
to the tree root (or the initial hidden state in the RNN paradigm). To stabilize
training and avoid vanishing or exploding weights and gradients, we model
paths as unitary transformations by parameterizing the two matrices of P to
orthogonality using the exponentiation trick on skew-symmetric bases [Bader
et al., 2019; Lezcano Casado, 2019]. Now, let tree node si,k contain symbol

Learning to Prove 171

t=0-

wa

?

wb

?

wc

?

. . .

t=0(a)

wa

a1

??

wb

b1

??

wc

c1

??

. . .

t=0(b)

wa

a1

??

wb

b1

??

wc

c1

??

. . .

t=0(c)

wa

a1

??

wb

b1

??

wc

c1

??

. . .

t=1(a)

wa

a1

a3

??

a2

??

wb

b1

b3

??

b2

??

wc

c1

c3

??

c2

??

. . .

Figure IV.4: A frame by frame view of the first decoding step.

172 Dependency as Modality, Parsing as Permutation

σ ∈ S ; its embedding ni,k will be agnostic to its tree index i and given as the
element-wise product of its tree-positional and content embeddings:

ni,k = p(k)(ρ0)⊙ (We(σ)) ∈ Rdn (IV.18)

The embedder is then essentially an instantiation of a binary branching uni-
tary RNN [Arjovsky et al., 2016], the choice of which hidden-to-hidden map
to follow at each step depending on the node’s position relative to its ances-
tor.1 Since paths are shared across trees, their representations are in practice
efficiently computed once per batch for each unique tree position during train-
ing, and stored as fixed embeddings during inference.

Node Prediction Assuming at step τ a sequence of globally contextualized
states hτ

0:n, we need to use each element hτ
i to obtain class weights for all of

the node neighborhood Ni,τ consisting of all nodes (if any) of tree ti that lie
at depth τ.2 We start by down-projecting the state vector into the node’s di-
mensionality using a linear map Wn. The resulting feature vectors are indis-
tinguishable between all nodes of the same tree – to tell them apart (and ob-
tain a unique prediction for each), we gate the feature vectors against each
node’s positional embedding. From the latter, we obtain class weights by ma-
trix multiplying them against the transpose of the symbol embedding table,
as standard practice compels [Press and Wolf, 2017]:

weightsi,k = (p(k)(ρ0)⊙Wnhτ
i)W⊤e (IV.19)

The above weights are converted into a probability distribution over the al-
phabet symbols S by application of the softmax function.

Autoregressive Feedback To update the states for the next iteration, we must
first provide autoregressive feedback from the last decoded nodes. We do so
using a heterogeneous message-passing scheme based on graph attention net-
works [Veličković et al., 2018; Brody et al., 2021]. First, we use a a linear map
Wb to down-project the state vector into the nodes’ dimensionality. For each
position i and corresponding state hτ

i , we compute a self-loop score:

α̃i,⟲,τ = wa · (Wb(hτ
i) || 0) (IV.20)

where wa ∈ R2dn a dot-product weight and 0 a dn-dimensional zero vector.
Then we use the (now decoded) neighborhood Ni,τ to generate a heteroge-

1Concurrently, Bernardy and Lappin [2022] follow a similar approach in teaching a unitary
RNN to recognize Dyck words, and find the unitary representations learned to respect the com-
positional properties of the task. Here we go the other way around, using the unitary recurrence
exactly because we expect them to respect the compositional properties of the task.

2That’s a lot of indexing operations. Look at figure IV.3 and assume an enumeration that
starts from 0 for timesteps and sequence positions and 1 for node positions. Then N1,2 would be
{b4, b5, b6, b7}.

Learning to Prove 173

neous attention score for each node si,k ∈ Ni,τ :

α̃i,k,τ = wa · (hτ
i || ni,k) (IV.21)

Scores are passed through a leaky rectifier non-linearity before being normal-
ized to attention coefficients α. These are used as weighting factors that scale
the self-loop and input messages, the latter upscaled by a linear map Wm:

h̃τ
i = ∑

si,k∈Ni,τ

αi,k,τWmni,k + αi,⟲,τhτ
i (IV.22)

This can also be seen as a dynamic residual connection – αi,⟲,τ acts as a gate
that decides how open the state’s representation should be to node feedback
(or conversely, how strongly it should retain its current values). States receiv-
ing no node feedback (i.e. states that have completed decoding one or more
time steps ago) are thus protected from updates, preserving their content. In
practice, attention coefficients and message vectors are computed for multiple
attention heads independently as done by Vaswani et al. [2017], but these are
omitted from the above equations to avoid cluttering the notation.

Sequential Feedback At the end of the node feedback stage, we are left with
a sequence of locally contextualized states h̃τ

i . The sequential structure can
be seen as a fully connected directed graph, nodes being states (words) and
edges tabulated as the square matrix E , with entry Ei,j containing the relative
distance between words i and j. We embed these distances into the encoder’s
vector space using an embedding table Wr ∈ R2κ×dw , where κ the maximum
allowed distance, a hyper-parameter. Edges escaping the maximum distance
threshold are truncated rather than clipped, in order to preserve memory and
facilitate training, leading to a natural segmentation of the sentence into (over-
lapping) chunks. Following standard practices, we project states into query,
key and value vectors [Vaswani et al., 2017], and compute the attention scores
between words i and j using relative-position weighted attention [Shaw et al.,
2018]:

ãi,j = d−1/2
w (Wq h̃τ

i ⊙WrEi,j) ·Wk h̃τ
j (IV.23)

From the normalized attention scores we obtain a new set of aggregated mes-
sages:

m′i,t = ∑
j∈{0..s}

exp(ãi,j)Wv h̃τ
j

∑k∈{0..s} exp(ãi,k)
(IV.24)

Same as before, queries, keys, values, edge embeddings and attention coef-
ficients are distributed over many heads. Aggregated messages are passed
through a swish-gated feed-forward layer [Dauphin et al., 2017; Shazeer,
2020] to yield the next sequence of state vectors:

hτ+1
i = W3

(
swish1(W1m′i,τ)⊙W2m′i,τ

)
(IV.25)

174 Dependency as Modality, Parsing as Permutation

CCGbank TLGbank Æthel
original rebank (1.0.0a5)

Primitives 37 40 27 81
Zeroary 35 38 19 31
Binary 2 2 8 50

Categories 1 323 1 619 851 5 762
in train 1 286 1 575 803 5 146
depth avg. 1.94 1.96 1.99 1.82
depth max. 6 6 7 35*

Test Sentences 2 407 2 407 1 571** 5 770
length avg. 23.00 24.27 27.58 16.52

Test Tokens 55 371 56 395 44 302 95 331
Frequent (100+) 54 825 55 690 43 289 91 503
Uncommon (10-99) 442 563 833 2 639
Rare (1-9) 75 107 149 826
Unseen (OOV) 22 27 31 363

*A beautiful conjunction of 35 noun phrases.
**Random but consistent train/dev/test split of 80/10/10.

Table IV.1: Bird’s eye view of datasets employed and relevant statistics. Test to-
kens are binned according to their corresponding categories’ occurrence count
in the respective dataset’s training set. Token counts are measured before pre-
processing. Unique primitives and tree depths for the type-logical datasets are
counted after binarization.

where W1,2 are linear maps from the encoder’s dimensionality to an interme-
diate dimensionality, and vice versa for W3.

Putting Things Together We compose the previously detailed components
into a single layer, which acts as a sequence-wide, recurrent-in-depth decoder.
We insert skip connections between the input and output of the message-
passing and feed-forward layers [He et al., 2016], and subsequently normalize
each using root mean square normalization [Zhang and Sennrich, 2019].

14.4.3 Experiments & Results

Datasets Testing the architecture on multiple datasets is good practice for
multiple reasons, the least cynical being that it helps us better affirm its poten-
tial. Hence, we shall employ it not just on Æthel but also on the two versions
of the CCGbank, as well as the French TLGbank; in total, 4 different datasets
spanning three languages and as many grammar formalisms.

A high-level overview of the datasets is presented in Table IV.1. The En-
glish CCGbank and its refined version [Honnibal et al., 2010, rebank] stand

Learning to Prove 175

out in having combinatory categories as their supertags, built with the aid of
two binary slash operators. Combinatory rules take care of shifting, raising
and function composition, allowing the lexicon to remain small and simple.
The key difference between the two versions lies in their tokenization and the
plurality of categories assigned, the latter containing more assignments and a
more fine-grained set of syntactic primitives, which in turn make it a slightly
more challenging evaluation benchmark. On more familiar grounds we have
the French TLGbank, Æthel’s distant but cherished uncle. It uses modalities
for control purposes, licensing or restricting the applicability of rules related to
non-local syntactic phenomena. Its supertags are therefore multimodal Lam-
bek types, the tree representations of which are not strictly binary; to attune
unary operators with the architecture, we cast them into pseudo-binaries by
inserting an artificial terminal tree within a fixed position. A similar strategy
is applied to Æthel (which I assume is by now familiar). Unary branches are
shortened by first merging diamond-box pairs into a single composite opera-
tor, and then iteratively merging adjunct (resp. complement) markers (either
plain or composite) with the subsequent (resp. preceding) binary operator.
The new symbols correspond to notational and temporal shorthands for mul-
tiple decisions compressed in a single time step, making for an unambiguous
and invertible representational translation at the cost of an enlarged primitive
alphabet. These shorthands are not to be confused with the ones we experi-
mented with earlier in Section 14.3. Back then, we were creating shorthands
for frequent (sub-)types (self standing trees), whereas here we are establishing
representational shorthands for composite type operators (tree constructors)
– see Figure IV.5 for an example.1

Training A single hyper-parameter setup is shared among all experiments,
obtained after a minimal logarithmic search over sensible initial values. Specif-
ically, we set the node dimensionality dn to 128 with 4 heterogeneous attention
heads and the state dimensionality dw to 768 with 8 homogeneous attention
heads. The window size for the state-to-state messaging passing rounds is set
to 14 (1 self connection, 6 right neighbours and as many left, 1 direct connec-
tion to the sequence summary token). We train using AdamW [Loshchilov
and Hutter, 2019] and a variable learning rate scaled by a linear warmup and
cosine decay schedule over 25 epochs, scaled by 10% for the encoder. During
training we provide strict teacher forcing and apply feature and edge dropout

1If you’re really really observant here, you might see a potential problem with this. If you
can’t, I’ll spoil it for you. Some of the composite alphabet symbols may appear in the test set (or in
the wild) without having ever appeared in the training set. These would be impossible to predict,
even in the constructive setting – not because they’re absent from the vocabulary, but because
there’s no usage examples to learn from! In fact, one such symbol exists, corresponding to the
type/tree pattern qx■x♢cmpbody ⊸ for hypothesizing a deeply nested body of a complementizer
– it has 3 occurrences in the dev set and 1 in the test set. This is basically the zipfian tai of the
zipfian tail – we’ll let it slide without rearranging the train/dev/test split, as it poses an innocuous
and fun little challenge and an easter egg of shorts. Obviously, dropping the practical restriction
for binarity would solve the problem, at the cost of elongated trees and the loss of architectural
uniformity.

176 Dependency as Modality, Parsing as Permutation

⊸

WHq♢whbody

⊸

Sviqx

■x

♢mod

□mod

⊸

INFINF

(a) Original decomposition.

⊸♢whbody

WHq⊸

Sviqx■x♢mod□mod⊸

INFINF

(b) With notational shorthands.

Figure IV.5: Compactifying the horrifying type of Figure III.10.

at 20% chance. The loss signal is derived as the label-smoothed negative log-
likelihood between the network’s prediction and the ground truth label. Base-
sized BERT variants are procured from the transformers library [Wolf et al.,
2020]: RoBERTa for English [Liu et al., 2019], BERTje for Dutch [de Vries et al.,
2019] and CamemBERT for French [Martin et al., 2020], all fine-tuned during
training. The model is trained to be responsible for its own chunking, merging
subsequent words into a multiword phrase by assigning a merge-left meta-
symbol to multiword parts.

Evaluation We perform model selection on the basis of validation accuracy,
and gather the corresponding test scores according to the frequency bins of
Table IV.1. Table IV.2 presents our results compared to relevant published lit-
erature. Evidently, our model surpasses established benchmarks in terms of
overall accuracy, matching or surpassing the performance of both traditional
supertaggers on common categories and constructive ones on the tail end of
the frequency distribution.

To investigate the relative impact of each network component, we conduct
an ablation study where message passing components are removed from their
network in their entirety. Removing the state feedback component collapses
the network into a token-wise separable recurrence, akin to a graph-featured
RNN without a hidden-to-hidden affine map. Removing the node feedback

Learning to Prove 177

accuracy (%)

model overall frequent uncommon rare unseen

CCGbank (original)
Symbol Sequential LSTM /w n-grams 95.99 96.40 65.83 8.65!
[Liu et al., 2021]

Tree Recursive (Feature Embedding) 96.09 96.44 68.10 37.40 3.03
[Prange et al., 2021]

Cross-View Training 96.10 – – – n/a
[Clark et al., 2018]

Attentive Convolutions 96.25 96.64 71.04 n/a n/a
[Tian et al., 2020]

Geometry-Aware Convolutions 96.29±0.04 96.61±0.04 72.06±0.72 34.45±1.58 4.55±2.87(this work)

CCGbank (rebank)
Symbol Sequential Transformer†

90.68 91.10 63.65 34.58 7.41
[Kogkalidis et al., 2019]

Tree Recursive (GRU) 94.62 95.10 64.24 25.55 2.47
[Prange et al., 2021]

Tree Recursive (Feature Embedding) 94.70 95.11 68.86 36.76 4.94
[Prange et al., 2021]

Geometry-Aware Convolutions 95.07±0.04 95.45±0.04 71.40±1.15 37.19±1.81 3.70±0.00(this work)

French TLGbank
ELMo & LSTM Classification 93.20 95.10 75.19 25.85 n/a
[Moot, 2019]

Geometry-Aware Convolutions 95.92±0.01 96.40±0.01 81.48±0.97 55.37±1.00 7.26±2.67(this work)

Æthel (0.4)
Symbol Sequential Transformerb 83.67 84.55 64.70 50.58 24.55
[Kogkalidis et al., 2020]

Æthel (1.0.0)
Geometry-Aware Convolutions 94.08±0.02 95.16±0.01 75.55±0.02 58.15±0.00 18.37±2.73(this work)

!Accuracy over both bins, with a frequency-truncated training set.
†Numbers from Prange et al. [2021].
bParser-integrated model trained with tree sequences spanning less than 140 nodes in total.

Table IV.2: Model performance across datasets and compared to recent stud-
ies. Numbers are taken from the papers cited unless otherwise noted. For our
model, we report averages and standard deviations over 6 runs. Bold face
fonts indicate (within standard deviation of) highest performance.

178 Dependency as Modality, Parsing as Permutation

node feedback only state feedback only no feedback

CCGbank (original) -0.05 -0.01 -0.08
CCGbank (rebank) -0.12 -0.04 -0.07
French TLGbank -0.13 -0.14 -0.23
Æthel (1.0.0) -0.24 -0.12 -0.39

Table IV.3: Absolute difference in overall accuracy when removing the state
and node feedback components (averages of 3 repetitions).

component turns the network into a Universal Transformer [Dehghani et al.,
2018] composed with a dynamically adaptive classification head. Removing
both is equatable to a 1-to-many contextualized token classification that is
structurally unfolded in depth. Our results, presented in Table IV.3, verify first
a positive contribution from both components, indicating the importance of
both information sharing axes. In three out of the four datasets, the relative
gains of incorporating state feedback outweigh those of node feedback, and
are most pronounced in the case of Æthel, likely due to its positionally ag-
nostic types. With the exception of CCGrebank, relinquishing both kinds of
feedback largely underperforms having either one, experimentally affirming
their compatibility.

14.4.4 Insights & Observations

Advantages Obtaining state of the art performance while still being able to
predict rare and unseen types with relative reliability is a definite advantage.
Like before, the approach provisions contextual and self-standing representa-
tions for atomic components virtually for free. Unlike before, the architecture
boasts an extremely fast inference speed that goes toe-to-toe with conventional
discriminative architectures, owing to its temporal upper bound scaling with
maximal tree depth (practically a constant, except for really perverse cases).
Structure manipulation is kept to the bare minimum, even in the absence of
oracle guidance, maximizing GPU utilization and data parallelism with high
efficiency sparse routines [Fey and Lenssen, 2019]. Operations are batched
and temporally iterated across all nodes and sequences without any CPU in-
terruptions. Each next fringe is dynamically generated on a purely numerical
basis.1 The architecture’s memory footprint and parameter count are also the
product of careful design and thus well under check, facilitating training and
parser integration (as we will soon see). The model takes approximately 5
hours to train on each dataset, and boasts a constant processing speed of 6 000
tokens⁄sec on a consumer-grade laptop GPU. By comparison, the sequential model

1By selecting decoded symbols that correspond to tree forming operators, isolating their in-
dices, multiplying them by two (to create left children), offsetting by one (to create right children),
and finally interleaving the two to yield both descendants. In the same vein, the indices of the
aligned states are simply the repetition of their respective ancestors’ indices.

Learning to Prove 179

takes about 100 hours to converge, and processes about 700 tokens⁄sec, scaling in-
versely with sentence length.

Supertagging and Sparsity Practice aside, the results obtained pose con-
crete evidence that lexical sparsity, historically deemed the categorial gram-
mar’s curse, might well just require a change of perspective to tame and de-
ploy as the answer to the very problem it poses. Crucially, the architecture’s
relative gains scale with respect to the task’s complexity. In the original version
of the CCGbank, the model is only slightly superior to the next best perform-
ing model – an ad hoc graph neural network with built in lexical biases (quite
literally the ideological antipode of our endeavour). The difference becomes
an order of magnitude wider for the slightly more challenging rebank version.
The effect is maximally pronounced for the harder type-logical datasets. For
the French TLGbank, performance jumps up to CCGbank scales (despite it
being significantly smaller and sparser). For Æthel, the absolute performance
leap is about 10% compared to the vanilla constructive tagger. Even though
there’s some data distance between the two experiments (version gap, differ-
ent data filtering, etc.) making strict numeric comparisons moot, the sizeable
improvement is beyond doubt. This is clearly to be attributed to increased
returns from the rare and uncommon bins. There is a synergistic effect be-
tween the larger population of these bins pronouncing even minor improve-
ments, while at the same time the acquisition of rare categories apparently
benefits from their plurality. Put simply, learning sparse assignments is easier
in grammars that contain many and diverse rare assignments, and improve-
ments there matter more – especially so if these don’t come at the cost of stabil-
ity at the higher frequency spectrum. The impact of this finding alone is bigger
than the menial architecture itself – it is basically an open invitation to more
elaborate, more strict and more regular lexicalized theories, and a promise
that no matter how statistically unruly they might seem, there will always be
an architectural solution to accommodate them. In today’s machine learning
frenzy, it is a statement of purpose lost: tools for the task, and not tasks for the
tools.

Limitations Despite its objective success, the methodology is not without
limitations. Most importantly, the parallel nature of the decoder trades infer-
ence speed for an incompatibility with greedy algorithms like beam search
and an inability to produce local assignment rankings. Put plainly, obtaining
more than the ”best” category assignment per word is not straightforward, a
fact which can prove harmful for coverage of a downstream parser. A possible
solution would involve branching across multiple tree-slices (i.e. sequences of
partial assignments) rather than single predictions, but efficiently computing
scores and comparing between complex structures is uncharted territory and
not trivial to implement. The issue is of course not unique to this system, but
common to all decoders that perform multiple assignments concurrently – as

180 Dependency as Modality, Parsing as Permutation

such, there is some hope that insights might percolate from one field to an-
other and eventually make their way to us.

15 Neural Proof Search

We have made significant progress with supertagging, first removing the scary-
looking roadblock of lexical type sparsity, and then producing numbers bigger
than any numbers seen before1, earning a spot at at the top 10 pop hits leader-
board for the next couple of months. But supertagging alone is not going to
take us to the end of the road. Far from it, in fact, since our chosen logic is
extremely permissive, burning away any hope of making do using just the
proof-theoretic tools we have available. The problem is simple: our type as-
signments, even when fully correct, still allow more proofs than desired – we
need yet another statistical learner on which to outsource the duty of find-
ing which one of these many proofs is the linguistically sensible one. And
once more, the discriminator approach is not going to work: enumerating and
ranking all well-formed proofs is a no-go – we have to build the correct proof
from scratch instead.

To move forward we need to look back. Almost an entire book ago, we had
a brief encounter with proof nets, and we saw them at work in the context of
ILL⊸ (by now rebranded as LP). Back then, we were quick to dismiss them
after a moment of shallow appreciation, seeing as they were too complicated
of a proof format for conducting search on, and too underspecific of a repre-
sentational format for showing around. Lots have changed since, and not for
the better; we added modalities, which impose further structure on their own,
invisible to proof nets (at least in their unaltered form). Why then should we
turn our attention back to them now?

The blast from the past is justified by the inadequacy of alternatives. The
natural deduction presentation we have predominantly employed is hierar-
chical and tree-like; assuming perfect processing and regardless of search di-
rection (bottom-up or top-down), computation is temporally bound by the
proof depth – bottlenecked by decisions due, or anticipating decisions to be.
The same is true for most proof-theoretic alternatives (tableaus, the sequent
calculus, λ terms, etc.). Decisions cannot be detached from the structure they
bind to and help form – to make a choice requires knowing your options,
which in turn requires that previous choices were not just abstractly made but
concretely evaluated. At the same time, even if the proof is to be dynamically
constructed, thus abolishing the need for enumerating all options globally,
each local junction point still needs to be exhaustively expanded for the con-
struction to proceed. Explicit symbolic manipulation and neural representa-
tions are inseparably bound, and even though the former can be somewhat

1Actually, Tian et al. [2020] were reporting even bigger numbers for a while, but it later turned
out that these numbers were in error and their real numbers were a lot smaller than the numbers
they originally reported. Long story short, don’t trust the numbers.

Learning to Prove 181

localized, it can never be foregone fully. Practically speaking, type safety is not
for free: it costs back-and-forth between the logical and numerical back ends,
inhibiting integration. Proof nets, on the other hand, are the embodiment of
data parallelism, the most sought-after property of neural computation and
the holy grail of efficient training and optimization. Decision making and va-
lidity testing are detached: we must first make all the decisions that are to be
made, and only then can we check whether they are structurally legitimate.
This laxness was the very reason we abandoned proof nets in the first place,
but it is exactly what makes them so very appealing now.

15.1 Permuting Types to Alignment

So what exactly is the structure of decisions encoded in a proof net? Recalling
our earlier discussion, a proof net is essentially two things and a promise. First,
a sequence of decomposition trees, called a proof frame. Second, a bijection
between atomic formulas of opposite polarities, called axiom links. The two
together make a proof structure, i.e. a candidate proof – if it so happens that we
can traverse the structure, the promise is kept: it is also a proof net. The proof
frame is deterministically obtained from a sequence of type assignments, and
thus irrelevant to this discussion – in principle, we can assume it to be given
from the supertagging component. The promise of traversability corresponds
to the deferred (and also deterministic) validity checking – it can only be done
given a proof structure. The only thing we really have any say on is the axiom
links. Our goal is therefore to design a neural model capable of manipulating
sets and building bijections between them – and not just any bijections, but
rather only those that are theoretically permitted (traversable, i.e. valid proofs)
and linguistically sensible (i.e. not just valid proofs, but also valid parses).

A feeling of apprehension wouldn’t be unreasonable at this point; neu-
ral models are notoriously ill-fit for discrete and combinatorial optimization.
Pulling us out of this momentary lapse is the folkloric knowledge that a bi-
jection between two ordered sets, or chains, can be uniquely represented as a
permutation matrix – a boolean valued, doubly stochastic and square matrix
that, left-applied to set1 (in column form), transports each of its elements to its
pair in set2. Note that the order does not need to be due to some intrinsic prop-
erty of the set and its elements, but may well be externally imposed – this is
just simply a representational trick. Considering also that a link is only possi-
ble between different instances of the same atomic type, the problem naturally
reduces to finding not a single, big matrix, but many smaller, independent
ones.

This might all be easier to digest with a visual example. Let’s turn our
attention to Figure IV.6, which displays an annotated proof net for the wh-
question Wat is die rare tekening? ‘What is this weird picture?’, with derivation:

wat △whbody(λx0.is x0 △su(▼detdie (▼modrare tekening))) (IV.26)

182 Dependency as Modality, Parsing as Permutation

Formula decompositions should be easy to decipher. Following the polariza-
tion induction, we end up with polarity information for all formula nodes, all
the way up to leaves – the only addition to the modus operandi of Section 2.2
are the unary modal branches, which are polarity preserving. To be able to tell
distinct occurrences of the same atom apart, we associate a unique index to
each leaf; the convention followed is irrelevant, but we may as well assume a
depth-first left-first sequence-wide enumeration. We can then use these to re-
fer back to the occurrences of atomic formulas they identify within the proof
frame. Gathering positive and negative leaves, we end up with two ordered
sets P and N; in this case P := {0, 2, 5, 7, 9, 10} and N := {1, 3, 4, 6, 8, 11}. Each
set can then be partitioned according to its elements’ types, yielding as many
positive as negative subsets, aligned in equinumerous pairs; in our case, posi-
tive subsets PVNW = {0}, PSvi

= {5}, PWHq = {2}, PNP = {7} and PN = {9, 10},
and their negative counterparts NVNW = {3}, NSvi

= {1}, NWHq = {11},
NNP = {4} and NN = {6, 8}. Now, rather than look for the correct bijection
between P and N, we should be looking for the correct bijections between sets
of the same “type” and opposite polarity. All sets except those indexed by N
are singletons, their pairs having but one bijection. Each of PN and NN contains
two elements, giving rise to two possible bijections – a one-in-two choice that
captures the entire proof! The bijection we are in search for is πN : PN ↣↠ NN,
πN(9) = 6, πN(10) = 8, which can be represented as the permutation matrix:

✓

✓

6 8

9

10
πN :=

(IV.27)

Without loss of generality, creating such matrices is what the proof search we
need to conduct boils down to – even if usually we’ll have more choices spread
among more types. Needless to say, this is a simplification; structural con-
straints are only partially imported, in the sense that traversability and well-
formedness are not respected by default. It is not an unreasonable one though;
the format is compact, and imports at least some of the structural constraints,
faithfully mirroring the definition of a proof structure at least. Besides, matri-
ces are the bread and butter of machine learning – we’re on the right track.

15.2 Neural Proof Nets

Permutation matrices may well be matrices, but they’re still discrete – not
something we could ever hope to differentiably produce. In our neural reimag-
ing of axiom links, we need to go for the next best thing: their continuous re-
laxations. A soft version of a permutation matrix can be approximated with
arbitrary precision by virtue of the Sinkhorn operator [Sinkhorn, 1964]. The
operator and its underlying theorem state that the iterative normalization (al-
ternating between rows and columns) of a square matrix with positive entries

Learning to Prove 183

Wat

⊸

WH+
q

2

♢whbody

⊸

S
−
vi

1

♢predc

VNW+

0

x0

is

⊸

⊸

S
+
vi

5

♢su

NP−

4

♢predc

VNW−

3

die

□det

⊸

NP+

7

N−

6

rare

□mod

⊸

N+

9

N−

8

tekening

N+

10

WH−q

11

Figure IV.6: The two layers of an LP♢,□ proof net: a proof frame (below) with
its axiom links (above).

184 Dependency as Modality, Parsing as Permutation

yields, in the limit, a doubly-stochastic matrix, the entries of which are almost
binary. Almost binary is binary enough – we will do just fine without going
to the limit. The positive entry constraint is a minor hickup though. To by-
pass it, we can move computation to the logarithmic domain, employing the
log-sum-exp trick in place of standard normalization, which also helps ensure
numerical stability. In that setting, the Sinkhorn normalization of a real-valued
square matrix X is defined as:

Sinkhorn(X) = lim
τ→∞

exp
(

Sinkhorn(τ)(X)
)

(IV.28)

where the induction is given by:

Sinkhorn(0)(X) = X (IV.29)

Sinkhorn(τ)(X) = Tr

(
Tr

(
Sinkhorn(τ−1)(X)

)⊤)
(IV.30)

and Tr the row normalization in the log-space:

Tr(X)i,j = Xi,j − log
N−1

∑
r=0

exp(Xr,j −max(Xr,:)) (IV.31)

Used this way, the Sinkhorn operator gives rise to a non-linear activa-
tion function that applies on matrices and pushes them towards binarity and
bistochasticity, analogous to a 2-dimensional softmax that preserves assign-
ment [Mena et al., 2018]. This exotic activation function is the key to effi-
ciently navigating the combinatorially prohibitive landscape of axiom links.1

Where previously we would need to either (i) thoroughly construct and rank
all combinations, or (ii) iteratively decode through each element of set1 while
dynamically adjusting set2 as candidates get excluded, we are now presented
with a much more appealing alternative; a temporally bound, backtrack-free
operation that translates the structural constraint of bijectivity into highly op-
timized and fully parallelizable linear algebraic routines.

To apply in the setup envisaged here, all we need to do is assemble ma-
trices containing unnormalized similarity scores in the cartesian product of
positive Pχ and negative Nχ occurrences of formula tree leaves, one such ma-
trix Sχ per unique atomic proposition χ present in a frame; a similar position
is advocated by Moot [2008]. Normalizing these scores with Sinkhorn and
contrasting the result with the target output (the discrete ground truth per-
mutation πχ) amounts to teaching a network an implicit ranking of the set of
bijections between the two sets, on the basis of their elements’ representations.
If training goes according to plan, the πχ-image (resp. π−1

χ) of each element
of Pχ (resp. Nχ) will outrank all competing items in Nχ (resp. Pχ), i.e. be the
largest entry of its row (resp. column) in Sχ. For this to have any chance of

1Recall that the number of possible bijections scales factorially with the cardinality of the sets.

Learning to Prove 185

success, the mechanism producing Sχ, and by extension the representations
of Pχ and Nχ, will need to be highly contextual. Embedding a leaf’s type, po-
larity and/or tree position won’t cut it – sequential context is crucial to disam-
biguate between leaves living in distinct instances of identical types, whereas
lexical association context should prove beneficial in resolving derivational
ambiguities (rare as they might be). Coincidentally and to our great fortune,
the two constructive supertaggers we have described and implemented in the
previous section do in fact provide contextual representations, at exactly this
granularity scale – imagine that! Happy coincidence aside, the operationaliza-
tion described is plug-and-play for any supertagger, constructive or otherwise
– the picky requirements on subtype representations can always be satisfied
by some third party encoder. Employing such an encoder might even be for
the best, in terms of performance alone – but for the sake of parameter com-
pression and model reuse, we are given the chance to have the decoding ar-
chitectures described earlier do double duty as “proof frame encoders”. To
that end, we simply need to jointly train supertagging and axiom linking in a
unified, end-to-end architecture, simultaneously optimizing both objectives.1

15.2.1 Implementation(s)

Since the original version of Kogkalidis et al. [2020], the architecture was re-
vised with minor micro-adjustments, and retrained with each new major adap-
tation of Æthel, charting a multidimensional course of only partially compati-
ble successive stops. In what follows, I describe in detail only the current and
most recent implementation [Kogkalidis et al., 2023], drawing parallels with
isolated historical insights only when relevant.

Supertagger Integration The architecture combines just as easily with both
the symbol sequential and the geometrically informed decoder, requiring only
an adaptation of how leaf nodes are indexed and gathered. Freely reusable as
they might be, the contextual representations of either decoder are imperfect:
each token can only be informed by tokens that temporally preceded it. In
theory, this means that disambiguation between competing link candidates is
back-loaded – the weight of flipping the scales is on the tokens last decoded.
It also means that the geometry-aware model is at a disadvanage, since it per-
forms multiple assignments in parallel. In practice, this is not a major concern
– both integrations perform exceptionally well and quickly fit the training set,
making the addition of any extra parameters redundant and a potential threat
to generalization; we can stick to using the decoder’s representations as is.

1Another way to see this is as a flipped version of the linear assignment problem, where given
matrices of representations P, N, a similarity metric w and target output π, we wish to learn
set element representations and the parameters of a similarity metric w (if any), such that the
quantity:

∑
i,j

πi,j ⊙ Sinkhornτ(S)i,j

is maximized, where Si,j = w(Pi , Nj).

186 Dependency as Modality, Parsing as Permutation

Choosing between the two decoders seems like a no brainer at first – the
geometry-aware formulation is significantly faster and more accurate, let alone
easier to train (despite these factors usually being in conflict). But in transi-
tioning to it, we forfeit the right to algorithmically search in the output space.
In practical terms, while we may keep demanding a new proof frame from
the symbol sequential supertagger ad infinitum (or until satisfied), the geo-
metric one won’t be at all receptive to our pleas – its greedily decoded proof
frame is our one and only chance at a parse. This limitation becomes espe-
cially relevant considering the impenetrable barrier placed by the count in-
variance property, requiring an equal count of positive and negatives for ev-
ery atomic type present (no square matrix otherwise!). A proof frame that fails
to satisfy that property is no good for proof search. This obstacle can be repur-
posed to a tool, as long as search is an option – hard-wiring the constraint into
beam search yields a correct-by-construction (yet painfully slow) decoding
algorithm, massively increasing computational load but practically ensuring
parsability.1 Sticking with the parallel decoder means having to wave such
niceties goodbye, at least until some search algorithm is formulated and im-
plemented. Even so, the drastically improved accuracy and speed translate
to a multiplicative increase in the performance-to-compute ratio – the greedy
output of the novel supertagger is practically as good as – and incomparably
faster than – a vanilla beam search on the original one, but with no guarantee
of structural correctness. Long story short, the geometry-aware decoder is not
a no brainer, but it’s still the superior choice.

Since the permutations require access to the atoms of goal (succedent) for-
mula, we train the supertagger to produce one, using the input sequence’s
sentential summary token (the [CLS] token, in jargon) as the stateful decod-
ing seed. Æthel’s proofs are actually restricted to atomic goal types, allowing
us to derive them “by hand” by simply counting which of the atomic types
has a positive atom too much – but that offers no vectorial representation we
can use.

Neural Permutation Module The permutation component may modulate
the linking process by providing a parametric and trainable similarity met-
ric. The current version utilizes a weight vector w ∈ Rdn to compute simi-
larity scores between positive and negative vectors as their w-weighted inner
product. This is an efficient way to selectively allocate signed weights on the
decoder’s representations, allowing certain pairwise interactions more promi-

1Beam searching over the symbol sequential decoder with a beam width β means obtaining
β unique sequences satisfying:

argmaxβ

(
n

∏
i

||ti ||

∏
j

p(sβ,i,j | sβ,k,: : k < i, sβ,i,k : k < j, w0:n)

)

We can import the count invariance condition by overwriting the probability score p(sβ,n,||tn ||| . . .)
assigned by the decoder with −∞ when t0:n fails the check, essentially discarding the sequence
and forcing a backtrack.

Learning to Prove 187

nence than others (or even imposing sparsity to disentangle the two problems,
if L1 regularization is employed). Let’s take a second to restate this: the tran-
sition from supertagging to full-blown parsing incurs a cost of 128 extra pa-
rameters; a relative increase of a paltry 0.0001%. What we have in our hands
is quite literally the world’s leanest parser.

Neurosymbolic Integration Symbolic processing is handled by the tiny type
system that Æthel rests on, now extended with conversion routines that allow
casting proofs to proof nets and back. The conversion routines allow us to con-
duct neural proof search in the favorable regime of proof nets, and convert the
result to natural deduction format only at the very end, for the sake of sanity
testing. Crucially, the type-checker, originally designed to assert the dataset’s
type safety, is now repurposed to a tool for verifying the correctness of analy-
ses constructed – a proof structure that does not constitute a proof net will fail
the traversal, throwing an error and alerting us to the fact. In other words, we
can blindly trust anything the parser gives us as correct, at least in the sense
of syntactic validity.

15.2.2 Experiments & Results

Training The unified architecture is end-to-end differentiable, and can be
jointly trained on both the supertagging and the axiom linking tasks simul-
taneously. The supertagging objective remains exactly as before, whereas the
linking loss is obtained as the negative log likelihood between the Sinkhorn-
normalized activations and the discrete ground truth labels (identical to stan-
dard multiclass classification). Given that proof frames are a priori known in
training and considering that teacher forcing ensures the correct autoregres-
sive interactions, we may simply proceed with isolating the leaves out of the
decoder’s representations. Leaf representations are binned according to their
sentential index, atomic type and polarity (e.g. a single bin would be all oc-
currences of a positive NP in sentence #13 of the input batch). Each bin is
zipped with its opposite polarity counterpart, and their element-wise simi-
larity scores are computed via the chosen metric.1 Similarity scores are nor-
malized by a fixed number of Sinkhorn iterations – three iterations suffice
to produce sharp activations without eroding the gradient updates. Similar-
ity scores and Sinkhorn normalizations are computed in parallel and batched
across bins of the same size (i.e. according to the bijected sets’ cardinality) – a
faster alternative would be to pad them to a fixed size using some arbitrarily
low constant as a padding value, but the difference is minor and not worth
the memory overhead.

1Note that the zipping function is not the similarity metric but the pairwise application of
one. In other words, the agreement scores are independently computed between pairs of elements
from the two sets. This is necessary to account for the variably sized sets encountered without ad
hoc padding, but also to ensure that the end operator is permutation invariant.

188 Dependency as Modality, Parsing as Permutation

parsability coverage
(some proof obtainable) (some proof obtained)

87.35±0.18 85.56±0.22

frame accuracy accuracy
(correct proof obtainable) (correct proof obtained)

57.76±0.55 55.63±0.55

Table IV.4: Sentential-level evaluation of the parser.

The joint architecture takes longer to train than the stand-alone tagger, ow-
ing to the slower forward and backward passes, but also due to the increased
number of epochs required to reach convergence. The linking task is surpris-
ingly fast to converge, but its inclusion is detrimental to supertagging, as its
loss term dominates the sum early on. Since accurate supertagging is a prereq-
uisite to parsing, linking loss is scaled by 10% to promote smoother training
curves and a healthier task balance. To nudge the model away from local op-
tima induced by gradient conflict, one of the two losses is occassionally zeroed
out with a 20% chance.

Evaluation During evaluation and inference, the decoder has to rely on its
own output, as the ground truth frame is unknown. When decoding com-
pletes, the output must first be “parsed” into types proper. Assuming no struc-
tural integrity issues, leaf positions are indexed, keeping track of their polar-
ities and atomic types – the result is a proof frame. For the frame to be an
eligible starting point for proof search, it must satisfy the count invariance
property, which is dynamically asserted on the spot. If it does, leaf represen-
tations are extracted and binned and their agreement scores are computed
and normalized like before (except sequentially for each sentence). In the rare
event that the local discretization (i.e. rounding) of a normalized matrix does
not correspond to a bijection, we resort to an explicit combinatorial optimiza-
tion via the Hungarian method, using the normalized scores as assignment
weights. This authorizes a sensible, static number of Sinkhorn iterations while
still providing a fallback to ensure the output’s structural integrity. In either
case, the pairings obtained correspond to axiom links, which are traversed to
produce a proof (more on that in a bit).

We proceed with evaluation with no training wheels: no pre- or post- pro-
cessing, no tokenization or chunking oracles, and no length, depth or fre-
quency thresholding. All scores reported are the average of three repetitions.
Numeric evaluation requires a way to compare proofs. The first and most
transparent thing to consider are sentential- (or proof-) level performance met-
rics, where there’s two axes of interest; axis one is whether we could have got-
ten or did get a proof, and axis two is whether that proof could be or was the
correct one. The key results are presented in Table IV.4.

Learning to Prove 189

local metrics global accuracy
modulo p r F1 proof frame

– 89.36±0.05 89.46±0.06 89.17±0.06 55.63±0.55 57.76±0.55
modalities 90.82±0.02 90.94±0.03 90.68±0.03 56.25±1.02 64.61±0.99
functional types 90.91±0.03 91.02±0.04 90.72±0.04 57.39±0.71 59.38±0.65
types 92.14±0.01 92.30±0.01 92.00±0.02 58.83±0.63 68.94±0.52

Table IV.5: Decomposition metrics and relaxations.

On the bottom right, accuracy corresponds to the proportion of sentences
assigned a proof that satisfies strict syntactic equality to the ground truth one,
and stands at a 55.63%. The significance of this number is easy to miss, con-
sidering the unforgiving rigidness of the metric and the demanding nature of
the task – proof equality means having perfectly captured the input’s function-
argument structures, functional types and dependency roles. By comparison,
the state of the art in CCGbank parsing is currently 54% [Clark, 2021] – which
is only to say that the two tasks, despite their obvious differences, are now
very proximal in performance, despite type-logical grammars being tradition-
ally dismissed as “too complex”. Less promising is the average coverage, i.e.
the proportion of sentences assigned any proof at all, lying at a modest 85.56%.
To find the culprit for this lacking result, we measure parsability, i.e. the pro-
portion of analyses whose proof frame satisfies the count invariance property.
Evidently, only 87.35% of the input is amenable to proof search at all. Despite
appearances, this is actually quite reasonable considering the severe architec-
tural limitation of being confined to the one single best proof frame. It also
goes to show that the permutation strategy is incredibly robust; 97.95% of the
parsable sentences are actually parsed, with the remaining 2.05% of the errors
being due to a structural link error (i.e. a proof structure that cannot be tra-
versed). To put this in context, only 2% of the parsable sentences contain any
structural error among any of their permutation bijections among any of the
atomic types present. In other words, the traversability condition that makes
a proof structure a proof net has been almost perfectly captured, despite re-
maining implicit throughout the training process, both in terms of represen-
tations used and of the loss signal backpropagated. More than just incredibly
robust, the permutations are extremely accurate. This is made evident when
considering the proportion of correct proofs to correct frames, which lies at an
astonishing 96.31%. Put plainly, the number suggests that an error-free proof
is practically guaranteed from an error-free frame. The results as a whole paint
a clear picture that takes little effort to interpret: the performance bottleneck
is on the supertagging module rather than the permutation module.

To understand the sizeable gap between accuracy and coverage, we em-
ploy an adaptation of the parsing community’s favorite F1-score. Concretely,
we gather all samples for which a proof was produced, and decompose both
prediction and ground truth into their respective sets of subproofs. We mea-
sure tp as the two sets’ intersection, f p as the difference between predicted

190 Dependency as Modality, Parsing as Permutation

and correct subproofs and f n as the difference between correct and predicted
subproofs, from which we may obtain precision as p = tp/(tp + f p), recall as
r = tp/(tp + f n) and their harmonic mean as F1 = 2pr/(p + r). On top of the
vanilla versions of these metrics, we can also examine relaxations by incorpo-
rating a combination of two modulo factors. Relaxation one targets the func-
tional core of the logic, applying a forgetful transformation that strips proofs
of their modalities in order to examine typed function-argument structures
in isolation. Relaxation two targets the modal enhancement of the logic, col-
lapsing the set of atomic types into a single point (thus treating all functional
types of the same shape as equal) in order to examine dependency structures
in isolation. Relaxing on both axes at once is essentially casting proofs into the
untyped λ calculus, where all we care about are the type- and dependency-
agnostic function-argument structures – this is the metric most comparable
to external theories.1 Note that relaxations are performed only after inference
– the point being that a strict proof must have been produced for its relax-
ations to be considered (i.e. lax accuracy is still bottlenecked by strict cover-
age). The results are averaged over covered samples2 and presented in Ta-
ble IV.5. Whether they are informative or not is up to debate; practically, they
suggest that allowing for the occassional error in an atomic type or modality,
about 92% of the subproofs returned are correct, and about as many of the
gold standard subproofs are returned, which in turn suggests that erroneous
parses are likely the product of isolated, local errors and not totally butchered.

15.2.3 Insights & Observations

Advantages The position that parsing is a problem of permutation offers an
appealing way of encoding the parse space, where computational efficiency
and formal correctness are no longer at odds. This challenges the status quo
of shift-reduce parsing, scorning iterative structure manipulation in favor of
a direct translation of structural constraints into vectorial ones, directly op-
timizable with numerical methods. Neural proof nets embody this in being
fully parallel (even intra-sententially) and living entirely on the GPU. They
refuse to engage in the over-parameterization game; combined with a con-
structive architecture, they’re practically parameterless – you can use them on
your grandma’s laptop. To call their asymptotic behavior favorable would be
an understatement; modern machines can perform a Sinkhorn normalization
over batches of 64 matrices in constant time (in the µs scale) for any matrix
order up to 27 – to comprehend how extremely ridiculous this is, consider
that this would amount to finding the correct bijection out of 27! = 3.9× 10215

possibilities across 64 pairs of sets in parallel. More than just efficient, they are
effective – employed here for an objectively difficult, sparse, underspecified

1Proofs are in β and η normal, so no free points from abstractions. Identity proofs are only
equal if they match in both name and type, so no free points from variable instantiations either.

2Averaging over the full test set would artificially inflate p and deflate r scores, since no partial
proofs are returned from failing samples.

Learning to Prove 191

and nascent type logic, they achieve accuracy comparable to that of estab-
lished parsers boasting decades of combined community wisdom and collec-
tive effort. Numbers aside, neural proof nets are messengers of unity and not
confrontation. In trivializing the difficulties associated with hypothetical rea-
soning, they bring explicit variable binding into practical relevance for wide-
coverage categorial grammars, discrediting decades of naysaying. The same
pipeline we used here applies to any grammar logic in the linear tradition –
type theoretic purity is no longer a foe to shy away from, but a free pass at
proof nets and their vectorized forms. To piggyback to our early discussions
on abstract categorial grammars, the methodology presents a way to deliver
type-correct tectogrammatic proofs directly from surface form, without having
to ever engage in the difficult game of explicating the phenogrammatic type-
and term- morphism, the latter implicitly internalized within a 128 parameter
long black box instead. The framework is finally open to modification; explicit
structural constraints additional to linearity may always be imported, either
as additional objective functions or representational adjustments.

Limitations The key issue with the end-to-end architecture is inherited from
the supertagger – our inability to mix and match multiple assignments is
now here to haunt us with a sharp 13% reduction in absolute coverage. Be-
yond that, the implementation described capitalizes on a disentanglement be-
tween neural and symbolic operations for the sake of efficiency. But doing
so comes at the heavy price of a unidirectional data flow that lacks cross-
component feedback; even though tagger and parser share the same represen-
tations, there’s no communication from the latter to the former. Symbolically
traversing the produced axiom links is done singularly for the sake of testing
and verifying the neural output, but gives us no chance to emit back a new
request. Failures may be caught, but they are nonetheless irrecoverable – a
partial output that fails any structural constraint, however rare or common,
signifies an abrupt and non-negotiable end to the processing pipeline. A bet-
ter operationalization would be to use the symbolic engine to continuously
ask for neural output as long as the structural constraints are not met (or the
user is not satisfied with the parse provided). For this to be possible, neural
components would need to be extended with some notion of backtracking. In
that sense, the parallel nature not just of the supertagger but also the parser
becomes now a double-edged sword, practically prohibiting us from asking
for the “next-best” set of axiom links – this becomes especially hard to tackle
considering how the permutations of different atoms are independently pro-
duced. On a relevant note, the permutation module is currently implemented
as a greedy deterministic oracle, making no attempt to account for deriva-
tional ambiguity. This is a sensible decision for the current set of experiments,
given that ambiguity is mostly captured at the type level. Still, the limitation
could be lifted by cross-contextualizing and/or adding noise and incorporat-
ing sampling routines in a probabilistic learning setup.

192 Dependency as Modality, Parsing as Permutation

15.3 Proof Nets in LP♢,□

Everything has been done, but not everything has been said. A cautious reader
might have noticed an argumentative sleight of hand in the current section. To
clear the air of any suspicion of deception, we need to step away from neural
matters and take one last detour through the loopy land of proof nets.1 The
issue at hand is none other than the use of proof nets as our representational
standard, which might be seen as implicating an equivalence relation between
proofs and proof nets. Such an implication would be sloppy – the two sure
are closely related, and going from proof to proof net is straightforward, but
the opposite direction is tricky: a proof net encodes less than necessary to al-
low a perfect proof reconstruction. Luckily, we are not really demanding an
isomorphism between LP♢,□ and our version of proof nets; we just want a lo-
cally one-to-one relation between the two, covering only the neighborhood of
proofs inhabited by our linguistic usecases. There’s a whole lot of proof pat-
terns we don’t expect to ever encounter, and can thus safely ignore, practically
reducing the combinatorial space to a manageable size. This might still seem
quite ambituous at a first – our proof nets have no means of encoding the
positionally underspecified diamond elimination rule ♢E, and are altogether
imperceptive of the structural extraction rule extrq This would’ve indeed been
the case if it wasn’t for our earlier providence: we have imposed a canonical
placement on both these rules, which should relieve the burden of translation.
In principle, we should be able to put things in literal order.

The algorithm we’ll follow requires as input a set of axiom links, a se-
quence of (antecedent) lexical type assignments and a (succedent) conclusion.
All types are polarized and their decomposition trees indexed – this means
we have invertible mappings between types and constant/variable indices,
leaf indices and types, and, by extension, leaf indices and constant/variable
indices. Using these, we may also produce the mirror image of a decomposition
tree on demand: a tree of the exact same type but opposite polarity, whose leaf
indices are the axiom link pairs of the original (regardless of link direction).

15.3.1 Traversal

Our traversal follows the same principles as did before – there’s two traversal
modes, negative and positive. Traversal begins in negative mode at the root
of the conclusion. If we pass through all nodes and no red letters appear on
our screen (read: no type errors are thrown) along the way, there’s a pinky
promise2 that the proof structure was a proof net. If what follows reads like
black magic, it’s probably because it is. Obscure as it might seem, it works:
followed by η and β normalizations and α conversion, it produces a faithful
back-and-forth translation for all the 55 108 unique theorems of Æthel.

1Actually a loop is the one thing a proof net should never have.
2That’s the closest we can do in lieu of a formal guarantee.

Learning to Prove 193

15.3.2 Negative Mode

Upon taking a step in negative (upward) mode traversal, we will consult the
mirror image of the tree just entered; if it is mapped to either a variable or a
constant, we will return the corresponding proof without actually proceeding
with the traversal; this allows us to sidestep dangerous η expanded modal
forms and their normalizations. If that’s not the case, we have no choice other
than to actually perform the traversal, taking a different action depending on
what the current node is.

Atom In the easiest case, it will just be a leaf – we just need to cross over it
and enter through the opposite end in positive (downward) mode. In the case
of the node being a type constructor, things get complicated.

Implication When encountering a negative implication (a par node), we will
first navigate the right hand side (the functor’s result, which is also negative)
– whatever we get back will be the body of a λ abstraction to-be. The vari-
able to abstract over is indexed by the left hand side (the functor’s argument,
which is positive), meaning we can usually just proceed with the abstraction
and return the result (as we know both the variable’s type and its index). Ex-
ceptionally, if the left hand side tree is rooted in a qx node, we are in trouble.
Its presence alerts us to the fact that the variable we are trying to abstract over
is structurally nested, meaning (i) we have its index wrong, and (ii) it is not
structurally free for us to abstract. To recover the correct index, we may sim-
ply just consult the variable index assigned to the positive tree rooted in the
qx node – when associating variables to formula trees, we know that positive
boxes rooted in positive diamonds are two distinct variables, to be indexed
separately. Having learned its name, we are now free to manipulate it and per-
form all extractions necessary on the proof body, moving the problem variable
to the outermost structural layer of the antecedent structure.1 At that point, we
procure a new proof for the body by aqxE rule, substituting the structural ⟨ ⟩x
for a logical diamond and the old variable for a new one, of the correct index.
We are then able to proceed with the abstraction and return the result as we’d
do normally.

Diamond A negative diamond is one of two things: an actual instruction to
apply a diamond introduction rule, or part of a variable’s type assignment.
As we discussed earlier, the difference between these two is only artificial –
but following our drive to avoid modal normalizations, we must figure out
which of the two possibilities we’re dealing with. To do so, we skip through
the diamond to the negative tree above, traverse it as usual, and then inspect
the result. If it so happens that it’s a proof containing a single variable as its
premise (bracketed or otherwise), we return it unaltered. If not, we apply the
appropriate ♢I rule as directed by the skipped node and return the result.

1Beware: this is not a rule applied locally, but a retroactive transformation of the entire proof.

194 Dependency as Modality, Parsing as Permutation

Box To reach a negative box node must mean that the negative adjunct we’re
traversing is not directly supplied by a constant or a variable, but rather by a
complex proof. As before, we skip the node, traverse the nested tree, and ap-
ply the appropriate □I rule to the result. The appearance of a □I rule shouldn’t
alienate us – it is just a case of a verbose η redex (considering we don’t employ
any closure patterns □♢) which will disappear after normalization.

15.3.3 Positive Mode

Upon entering a tree through a leaf in positive (downward) mode, we need to
delineate its shape and content by identifying its root, i.e. the lowest positive
node we can reach without changing sign (i.e. passing through a negative im-
plication). If that root is a qx node, we’ll go for the immediately previous root
instead, i.e. a ■x node. We’ll then instantiate either a variable or a constant
(depending on what kind of proof the tree is associated with) and begin the
traversal by pattern matching the entire tree while passing the freshly instanti-
ated proof as context. Positive mode traversal may occassionally require a cut
to proceed, that being a tuple of a variable and a proof – its role will become
apparent in a bit. No cut is provided initially.

Atom If the tree is a singleton, we simpy return the context and call it a day.

Implication If the tree is rooted in an implication and no cut was provided,
things look familiar. We simply perform a negative traversal of the left branch,
apply the context to it, and then step up the tree passing the updated context.
If a cut was provided, we must first unpack its contents. These are to be read
as instructions from the past, calling for ♢E rule to be applied on the context
in order to substitute the unpacked variable for the unpacked proof. After the
substitution is performed, we may proceed as before.

Diamond A positive diamond is a bit of a wildcard. What’s for certain is
that we are within some hypothesis, as diamonds in result position was never
part of the plan. To figure out what kind of hypothesis we’re dealing with,
we have to inspect the contained tree above. If it’s a leaf, we’re inside the
type assignment of a complement variable, so we may simply return the con-
text. If it’s an implication, we’re inside some hypothesis of a very high order
type – traversal is ill-advised, but assuredly the entire tree must be associated
with a variable which we can just return untouched. If it’s a box, things get
interesting – we’re in an interior pattern ♢□. For this to make sense, the two
modalities must match in their labels. Assuming they do, the diamond node is
prescribing a cut: a substitution to be done in the future. We must package the
variable associated with the nested (box-rooted) tree together with the passed
context. We then continue with the traversal, using the variable as the reset
context – when the time comes, it will be substituted for the previous context.

Learning to Prove 195

Box The box is again the better behaved of the two modalities. A box in
positive mode is simply a call for □E rule to be applied on the context before
continuing with the traversal.

16 Key References & Further Reading

On this pleasant note, this chapter has reached its overdue end. If excited
about the prospects of the work presented here, you’re in luck – the field is
fresh as a daisy and the possibilities for further developments endless. Below
you’ll find some pointers to get you started.

Despite digressions against the sequence-to-sequence paradigm, our orig-
inal supertagger [Kogkalidis et al., 2019] is inspired and preceded by a ton
of inventive applications of such models repurposed for structure induction
[Vinyals et al., 2015; Wiseman and Rush, 2016; Dong and Lapata, 2016;
Buys and Blunsom, 2017, inter alia]. Our early results have somewhat sen-
sitivized the community to the problem of open-domain lexicalized supertag-
ging. Bhargava and Penn [2020] essentially replicate our early experiments
(i.e. same venue and paradigm but a year later, except this time on the CCG-
bank). Other, serious steps forward include the ones by Prange et al. [2021]
and Liu et al. [2021], who concurrently sought to account for the tree-like
structure of lexical categories, the former through a tree-biased architecture
and the latter through transition-based parsers applied per category at the
word level.

These serve as the inspiration for the geometry-informed supertagger of
Kogkalidis and Moortgat [2022], which bears semblance and owes credit to
various ongoing lines of architectural work. The depth recurrence is evoca-
tive of weight-tied architectures [Dehghani et al., 2018; Bai et al., 2019] and
their graph-oriented variants [Li et al., 2016], which model neural compu-
tation as the fix-point iteration of a single layer against a structured input,
thus allowing for a dynamically adaptive computation “depth” – albeit with a
constant parameter count. Analogously to structure-aware self-attention net-
works [Zhu et al., 2019; Cai and Lam, 2020, inter alia] and graph attentive net-
works [Veličković et al., 2018; Yun et al., 2019; Ying et al., 2021; Brody et al.,
2021, inter alia], it also employs standard query/key and fully-connected at-
tention mechanisms injected with structurally biased representations, either at
the edge or at the node level. Finally, akin to dynamic graph approaches [Liao
et al., 2019; Pareja et al., 2020], it forms a closed loop system that autoregres-
sively generates its own input, in the process becoming exposed to subgraph
structures that drastically differ between time steps.

Our neuralification of proof nets [Kogkalidis et al., 2020] is really just
the creative application of modern breakthroughs in optimal transport learn-
ing and differentiable set representations [Cuturi, 2013; Mena et al., 2018;
Grover et al., 2019; Peyré et al., 2019, inter alia], combined with existing in-
sights and intuitions on the application of graph-theoretic machinery for proof

196 Dependency as Modality, Parsing as Permutation

search [Moot, 2008]. A year later, Bhargava and Penn [2021] present our op-
erationalization anew, and apply it on a Lambek-adapted subset of the CCG-
bank. As for steps forward, Moot [2022] raises a shismatic criticism of proof
nets from within, but also provides stimuli and incentives for alternative op-
erationalizations. De Pourtales et al. [2023] are more devout, adapting the ar-
chitecture for use with a multimodal Lambek calculus targeted for French.
Finally, Clark [2021] recounts an up-to-date tale of categorial grammar pars-
ing, and offers new insights along the way, but from the combinatory side of
history – this might prove handy if you’re looking for alternative perspectives.

Chapter IV Bibliography

M. Arjovsky, A. Shah, and Y. Bengio. Unitary evolution recurrent neural
networks. In International conference on machine learning, pages 1120–1128.
PMLR, 2016.

P. Bader, S. Blanes, and F. Casas. Computing the matrix exponential with an
optimized Taylor polynomial approximation. Mathematics, 7(12):1174, 2019.

D. Bahdanau, K. H. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Repre-
sentations, 2015.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

S. Bangalore and A. Joshi. Supertagging: An approach to almost parsing. Com-
putational linguistics, 25(2):237–265, 1999.

J.-P. Bernardy and S. Lappin. Assessing the unitary RNN as an end-to-end
compositional model of syntax. arXiv preprint arXiv:2208.05719, 2022.

A. Bhargava and G. Penn. Supertagging with ccg primitives. In Proceedings of
the 5th Workshop on Representation Learning for NLP, pages 194–204, 2020.

A. Bhargava and G. Penn. Proof net structure for neural lambek categorial
parsing. In Proceedings of the 17th International Conference on Parsing Tech-
nologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal
Dependencies (IWPT 2021), pages 13–25, 2021.

S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks?
In International Conference on Learning Representations, 2021.

J. Buys and P. Blunsom. Robust incremental neural semantic graph parsing.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1215–1226, 2017.

198 Dependency as Modality, Parsing as Permutation

D. Cai and W. Lam. Graph transformer for graph-to-sequence learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
7464–7471, 2020.

W. Che, Y. Liu, Y. Wang, B. Zheng, and T. Liu. Towards better UD parsing:
Deep contextualized word embeddings, ensemble, and treebank concate-
nation. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 55–64, Brussels, Belgium,
Oct. 2018. Association for Computational Linguistics. doi: 10.18653/v1/
K18-2005. URL https://aclanthology.org/K18-2005.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014a.

K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In EMNLP, 2014b.

K. Clark, M.-T. Luong, C. D. Manning, and Q. Le. Semi-supervised sequence
modeling with cross-view training. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 1914–1925, Brussels,
Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1217. URL https://aclanthology.org/D18-1217.

S. Clark. Supertagging for combinatory categorial grammar. In Proceedings of
the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+ 6), pages 19–24, 2002.

S. Clark. Something old, something new: Grammar-based CCG parsing with
transformer models. CoRR, abs/2109.10044, 2021. URL https://arxiv.org/
abs/2109.10044.

S. Clark and J. R. Curran. The importance of supertagging for wide-coverage
CCG parsing. In COLING 2004: Proceedings of the 20th International Conference
on Computational Linguistics, pages 282–288, Geneva, Switzerland, aug 23–
aug 27 2004. COLING. URL https://aclanthology.org/C04-1041.

S. Clark and J. R. Curran. Wide-coverage efficient statistical parsing with ccg
and log-linear models. Computational Linguistics, 33(4):493–552, 2007.

J. R. Curran, S. Clark, and D. Vadas. Multi-tagging for lexicalized-grammar
parsing. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Lin-
guistics, pages 697–704, 2006.

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
Advances in neural information processing systems, 26, 2013.

https://aclanthology.org/K18-2005
https://aclanthology.org/D18-1217
https://arxiv.org/abs/2109.10044
https://arxiv.org/abs/2109.10044
https://aclanthology.org/C04-1041

Chapter IV Bibliography 199

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 933–941, 2017.

C. de Pourtales, J. Rabault, K. Kogkalidis, and R. Moot. DeepGrail: Neural
proof nets for French. Technical report, LIRMM, 2023. forthcoming.

W. de Vries, A. van Cranenburgh, A. Bisazza, T. Caselli, G. van Noord, and
M. Nissim. Bertje: A dutch bert model. arXiv preprint arXiv:1912.09582,
2019.

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser. Universal
transformers. In International Conference on Learning Representations, 2018.

T. Deoskar, M. Mylonakis, and K. Sima’an. Learning structural dependencies
of words in the Zipfian tail. In Proceedings of the 12th International Conference
on Parsing Technologies, pages 80–91, Dublin, Ireland, Oct. 2011. Association
for Computational Linguistics. URL https://aclanthology.org/W11-2911.

T. Deoskar, C. Christodoulopoulos, A. Birch, and M. Steedman. Generalizing
a strongly lexicalized parser using unlabeled data. In Proceedings of the 14th
Conference of the European Chapter of the Association for Computational Linguis-
tics, pages 126–134, 2014.

L. Dong and M. Lapata. Language to logical form with neural attention. In
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 33–43, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics. doi: 10.18653/v1/P16-1004.
URL https://aclanthology.org/P16-1004.

M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019.

A. Grover, E. Wang, A. Zweig, and S. Ermon. Stochastic optimization of
sorting networks via continuous relaxations. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?id=
H1eSS3CcKX.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

M. Honnibal, J. R. Curran, and J. Bos. Rebanking ccgbank for improved np
interpretation. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pages 207–215, 2010.

A. K. Joshi and S. Bangalore. Disambiguation of super parts of speech (or su-
pertags) almost parsing. In Proceedings of the 15th conference on Computational
linguistics-Volume 1, pages 154–160, 1994.

https://aclanthology.org/W11-2911
https://aclanthology.org/P16-1004
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX

200 Dependency as Modality, Parsing as Permutation

N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models.
In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1700–1709, 2013.

J. Kasai, B. Frank, T. McCoy, O. Rambow, and A. Nasr. TAG parsing with neu-
ral networks and vector representations of supertags. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing, pages
1712–1722, Copenhagen, Denmark, Sept. 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D17-1180. URL https://aclanthology.
org/D17-1180.

K. Kogkalidis and M. Moortgat. Geometry-aware supertagging with heteroge-
neous dynamic convolutions, 2022. URL https://arxiv.org/abs/2203.12235.

K. Kogkalidis, M. Moortgat, and T. Deoskar. Constructive type-logical su-
pertagging with self-attention networks. In Proceedings of the 4th Work-
shop on Representation Learning for NLP (RepL4NLP-2019), pages 113–123,
Florence, Italy, Aug. 2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-4314. URL https://aclanthology.org/W19-4314.

K. Kogkalidis, M. Moortgat, and R. Moot. Neural proof nets. In Proceedings
of the 24th Conference on Computational Natural Language Learning, pages 26–
40, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.conll-1.3. URL https://aclanthology.org/2020.conll-1.3.

K. Kogkalidis, M. Moortgat, and R. Moot. SPINDLE: Spinning raw text into
lambda terms with graph attention. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics: System
Demonstrations, Dubrovnik, Croatia, 2023. Association for Computational
Linguistics. To Appear.

H. Larochelle and G. E. Hinton. Learning to combine foveal glimpses with
a third-order boltzmann machine. Advances in neural information processing
systems, 23, 2010.

M. Lewis and M. Steedman. Improved CCG Parsing with Semi-supervised
Supertagging. Transactions of the Association for Computational Linguistics, 2:
327–338, 10 2014. ISSN 2307-387X. doi: 10.1162/tacl a 00186. URL https:
//doi.org/10.1162/tacl a 00186.

M. Lewis, K. Lee, and L. Zettlemoyer. LSTM CCG parsing. In Proceed-
ings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 221–231,
San Diego, California, June 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/N16-1026. URL https://aclanthology.org/N16-1026.

M. Lezcano Casado. Trivializations for gradient-based optimization on mani-
folds. Advances in Neural Information Processing Systems, 32, 2019.

https://aclanthology.org/D17-1180
https://aclanthology.org/D17-1180
https://arxiv.org/abs/2203.12235
https://aclanthology.org/W19-4314
https://aclanthology.org/2020.conll-1.3
https://doi.org/10.1162/tacl_a_00186
https://doi.org/10.1162/tacl_a_00186
https://aclanthology.org/N16-1026

Chapter IV Bibliography 201

Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow. Gated graph sequence neural
networks. In International Conference on Learning Representations, 2016.

R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K. Duvenaud, R. Urtasun,
and R. Zemel. Efficient graph generation with graph recurrent attention
networks. Advances in Neural Information Processing Systems, 32, 2019.

W. Ling, C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir, L. Marujo,
and T. Luı́s. Finding function in form: Compositional character models for
open vocabulary word representation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pages 1520–1530, Lis-
bon, Portugal, Sept. 2015. Association for Computational Linguistics. doi:
10.18653/v1/D15-1176. URL https://aclanthology.org/D15-1176.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Y. Liu, T. Ji, Y. Wu, and M. Lan. Generating ccg categories. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(15):13443–13451, May 2021. doi:
10.1609/aaai.v35i15.17586. URL https://ojs.aaai.org/index.php/AAAI/
article/view/17586.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=Bkg6RiCqY7.

L. Martin, B. Muller, P. J. O. Suárez, Y. Dupont, L. Romary, É. V. de la Clergerie,
D. Seddah, and B. Sagot. Camembert: a tasty french language model. In
ACL 2020-58th Annual Meeting of the Association for Computational Linguistics,
2020.

G. Mena, D. Belanger, S. Linderman, and J. Snoek. Learning latent per-
mutations with gumbel-sinkhorn networks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=
Byt3oJ-0W.

V. Mnih, N. Heess, A. Graves, and k. kavukcuoglu. Recurrent mod-
els of visual attention. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, editors, Advances in Neural In-
formation Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper/2014/file/
09c6c3783b4a70054da74f2538ed47c6-Paper.pdf.

R. Moot. Graph algorithms for improving type-logical proof search. arXiv
preprint arXiv:0805.2303, 2008.

R. Moot. Reconciling vectors with proofs for natural language processing.
Compositionality in formal and distributional models of natural language

https://aclanthology.org/D15-1176
https://ojs.aaai.org/index.php/AAAI/article/view/17586
https://ojs.aaai.org/index.php/AAAI/article/view/17586
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=Byt3oJ-0W
https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf

202 Dependency as Modality, Parsing as Permutation

semantics, 26th Workshop on Logic, Language, Information and Computa-
tion (WoLLIC 2019), July 2019. Retrieved from https://richardmoot.github.
io/Slides/WoLLIC2019.pdf.

R. Moot. Perspectives on neural proof nets. arXiv preprint arXiv:2211.04141,
2022.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
T. Schardl, and C. Leiserson. EvolveGCN: Evolving graph convolutional
networks for dynamic graphs. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34, pages 5363–5370, 2020.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep contextualized word representations. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics. doi: 10.18653/v1/N18-1202. URL https:
//aclanthology.org/N18-1202.

G. Peyré, M. Cuturi, et al. Computational optimal transport: With applications
to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–
607, 2019.

J. Prange, N. Schneider, and V. Srikumar. Supertagging the long tail with tree-
structured decoding of complex categories. Transactions of the Association for
Computational Linguistics, 9:243–260, 2021. doi: 10.1162/tacl a 00364. URL
https://aclanthology.org/2021.tacl-1.15.

O. Press and L. Wolf. Using the output embedding to improve language mod-
els. In Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 2, Short Papers, pages 157–163,
Valencia, Spain, Apr. 2017. Association for Computational Linguistics. URL
https://aclanthology.org/E17-2025.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany, Aug. 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162.

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position
representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-2074. URL https://aclanthology.org/N18-2074.

https://richardmoot.github.io/Slides/WoLLIC2019.pdf
https://richardmoot.github.io/Slides/WoLLIC2019.pdf
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
https://aclanthology.org/2021.tacl-1.15
https://aclanthology.org/E17-2025
https://aclanthology.org/P16-1162
https://aclanthology.org/N18-2074

Chapter IV Bibliography 203

N. Shazeer. GLU variants improve transformer. arXiv preprint
arXiv:2002.05202, 2020.

R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the in-
ception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

E. Thomforde and M. Steedman. Semi-supervised CCG lexicon extension.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1246–1256, Edinburgh, Scotland, UK., July 2011. As-
sociation for Computational Linguistics. URL https://aclanthology.org/
D11-1115.

Y. Tian, Y. Song, and F. Xia. Supertagging combinatory categorial grammar
with attentive graph convolutional networks. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
6037–6044, 2020.

A. Vaswani, Y. Bisk, K. Sagae, and R. Musa. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 232–237,
San Diego, California, June 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/N16-1027. URL https://aclanthology.org/N16-1027.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neu-
ral information processing systems, 30, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.
Graph attention networks. In International Conference on Learning Represen-
tations, 2018.

O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar
as a foreign language. Advances in neural information processing systems, 28,
2015.

S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search
optimization. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1296–1306, 2016.

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/D11-1115
https://aclanthology.org/D11-1115
https://aclanthology.org/N16-1027

204 Dependency as Modality, Parsing as Permutation

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 conference on empirical methods
in natural language processing: system demonstrations, pages 38–45, 2020.

W. Xu, M. Auli, and S. Clark. CCG supertagging with a recurrent neural net-
work. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 250–255, Beijing, China, July 2015.
Association for Computational Linguistics. doi: 10.3115/v1/P15-2041. URL
https://aclanthology.org/P15-2041.

W. Xu, M. Auli, and S. Clark. Expected F-measure training for shift-reduce
parsing with recurrent neural networks. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 210–220, San Diego, California,
June 2016. Association for Computational Linguistics. doi: 10.18653/v1/
N16-1025. URL https://aclanthology.org/N16-1025.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu. Do
transformers really perform badly for graph representation? Advances in
Neural Information Processing Systems, 34, 2021.

S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph transformer networks.
Advances in neural information processing systems, 32, 2019.

B. Zhang and R. Sennrich. Root mean square layer normalization. Advances in
Neural Information Processing Systems, 32, 2019.

J. Zhu, J. Li, M. Zhu, L. Qian, M. Zhang, and G. Zhou. Modeling graph
structure in transformer for better AMR-to-text generation. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5459–5468, Hong Kong, China, Nov. 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/D19-1548. URL
https://aclanthology.org/D19-1548.

https://aclanthology.org/P15-2041
https://aclanthology.org/N16-1025
https://aclanthology.org/D19-1548

CHAPTER V

Conclusion

Because all good things (and bad ones too) must come to an end.

I am slowly running out of words to write, and you’re probably running
out of words to read, so we best keep this short.

In Retrospect Let’s first look back on what we’ve gone through and try to
put everything in context using the gift of hindsight. After a brief survey of
substructural type theories and categorial grammars, we set off into the un-
known, armed only with the basic tools of logical deduction and a residuated
pair of modal operators.

Our first stop was the crossroads between phrase structure grammars and
dependency grammars. Comparing them to our freshly adopted categorial
heritage, we found them both lacking. Phrase structure grammars are in prin-
ciple subsumed by categorial grammars, while dependency grammars play
a different game altogether, devoid of higher-order interactions. Nonetheless,
we saw a merit absent from the categorial vocabulary in the dependency tra-
dition. Dependency grammars’ itemization of grammatical functions amounts
to an extra dimension, perpendicular to the one of function-argument struc-
tures captured by the implicative operators standard in categorial grammars.
Having seen past the horizon and unwilling to become entrenched in a flat-
land of the vaster grammatical expanse, we rejected the dilemma and charted
a new, interdimensional course. To navigate this alien territory, we repur-
posed the modal operators. Previously used for fine-tuning structural control,
they became type-conscious ways to impose barriers on structural form and
computational meaning, delineating grammatical constituents with named

206 Dependency as Modality, Parsing as Permutation

boundaries – and λ terms with named operations – that specify their gram-
matical role.

Eager to put our apparatus to the test, we sought to employ it in converting
a corpus of Dutch syntactic derivations encoded as dependency graphs into a
of type-safe spin-off consisting of type-logical proof-derivations. Lacking the
patience to engage with the mythical beast of Dutch word order, we simply
navigated around it, propelled by a logical system unmoved by phrasal struc-
ture permutation. We revelled in the resulting logic’s easy and (for the most
part) transparent tackling of discontinuous and non-local phenomena, defer-
ring any pain points stemming from linguistic underspecification and lexical
type ambiguity to what at the time seemed like the distant future.

Soon thereafter, future became present and the past caught up. Attempting
to settle into our type-logical destination with a practically usable real-world
parser, we encountered a barren landscape, where none of the blueprints of
the modern neural world would readily apply. Our type universe turned out
to be too broad and our type lexicon too sparse for standard sequence classi-
fication techniques to apply, necessitating a radical overhaul of the supertag-
ging problem. Unhindered, we produced the the first ever instance of a su-
pertagging architecture capable of correctly producing novel type assignments,
pointing to a general solution to lexical type sparsity. Employing geometric
constraints, we then proceeded to improve upon it, establishing the current
state of the art – not just for our own niche corner of the world, but also for
the more mainstream combinatorial grammar resort. Finally, we saw how the
proof nets of linear logic offer a unique oportunity at quite literally the lean-
est (and quite possibly the meanest) substructral parser conceived to date, re-
solving also linguistic underspecification and experimentally proving both the
theory and our tooling valid contestants to the status quo.

In Practice Everything produced as part of this thesis is 100% open source
and open access since day one. To play with, contribute to, track the progress
of, or ask for aid with any of the software and resources developed, I redirect
you to the relevant repositories below.

• Æthel – https://github.com/konstantinosKokos/aethel
Æthel, batteries included. Contains the Python backend allowing the repre-
sentation and manipulation of LP♢,□ proofs as necessary for the implemen-
tation of the proof extraction algorithm, and provides user facing utilities
for loading, inspecting and searching through Æthel samples with minimal
effort. Download links to the verified dataset and versioning changelogs
are also provided.

• Spind(2)λe1 – https://github.com/konstantinosKokos/spindle
A curated repackaging of the geometry-aware supertagger, neural proof
nets and Æthel’s type checker into a single package, intended as a pro-
totype neurosymbolic parser that showcases the combined potential of its

1Spindle parses into dependency-decorated λ expressions.

https://github.com/konstantinosKokos/aethel
https://github.com/konstantinosKokos/spindle

Conclusion 207

components. A user can easily invoke the whole system to efficiently parse
a collection of sentences with a single command from a Python console.

The above two are actively maintained and shall remain accessible for the
foreseeable future – brief user instructions for the both can be found in Ap-
pendix A. Publication-specific code is archived for historical purposes and/or
to assist with replicating experiments – refer to the paper of interest for the
corresponding repository links.

In the Future The future’s not ours to see. If however you feel like you could
use some suggestions on where this caravan could be headed next, there’s
quite some vistas inviting further exploration.

For starters, our discussion of modalities as dependencies barely scratches
the surface of what the paradigm could offer. In our presentation and for our
current purposes, we have employed LP♢,□ not out of linguistic rigor but
rather in absence thereof, pragmatic engineering constraints being the main
driving force. A more linguistically disciplined exploration of the structures
of (N)LP(P)♢,□ could aim to align the agendas of structural annotation and
structural control, here treated as distinct and unaware of one another. Dif-
ferent rule vocabularies could be used to account for the named yet empty
structural traces left behind by movement, or simply to alter the structural
properties of the logic depending on the bracketing context – be it of a depen-
dency grammar flavor or otherwise. On another level altogther, it’s intriguing
to contemplate whether the peculiar, quasi-mobile structures of LP♢,□ used
here have any proximity to the surface form of any actual language, artificial
or otherwise.

In a twist of a fate, the incorporation of dependency modalities blew up
our lexicon, largely counteracting any benefits we would have hoped to reap
from ignoring word order, and thus forcing us to actively account for lexical
type sparsity. By now, this has lead to the birthing of a series of novel archi-
tectures, all addressing the same problem; some our own, some by others.
In pushing the boundaries of supertagging, these architectures also implicitly
promote the eventual abolition of parsing. Practically usable sparse grammars
essentially translate to an open invitation to design and incorporate elaborate
morphosyntactic constraints, which in turn reduce the need for parsing by di-
minishing the output search space. In the extreme, no decisions at all would
be delegated to the parser; the correct derivation(s) fully preordained by the
type assignments. In the less extreme, if a 128 parameter long parser is able
to reliably navigate a proof space as expansive as that of our logic, imagine
what we could do with a stricter type system and/or a better supertagger. In
all honesty and as a message to future endeavours, if this thesis were to start
today, the ingrained directive of taking design decisions that push away from
sparsity would have been far less pressing.

Finally, the neuralification of proof nets opens the floodgates to a storm
surge of architectural possibilities. Proof search can be recast into a greedy al-
gorithm with the concurrent filtering of structural impossibilities, derivational

208 Dependency as Modality, Parsing as Permutation

ambiguity can be tackled by latent variables and noisy sampling, proofs can
be encoded using graph neural networks and represented independently of
the input sentence, and the list goes on.

Which (if any) of these directions shall be picked up is as much as up to
you, dear reader, as it to me.

APPENDIX A

Implementation Notes

The acronym Æthel has two readings, depending on the aspect of the E. Read
as automatically extracted theorems from Lassy, it is an elaborate dataset of
type-checked derivations of Dutch in LP♢,□. Read as automatically extracting
theorems from Lassy, it is a Python library for extracting, processing and rep-
resenting these derivations. The two are made for one another; even though
they can live independently, they are best presented together. We’ll start from
the second aspect and move towards the first. The exposition is honest but not
exhaustive with respect to the actual code – the intention is not to write a full
API reference manual but rather just a quick how-to guide, with occasional
commentary motivating design decisions. The full source code is available at
https://github.com/konstantinosKokos/aethel.1 For up-to-date user instru-
ctions and data downloads please refer to the repository, which shall remain
active and accessible for the foreseeable future.

1 NLP with LP♢,□

Implementing a type system in an untyped language is a perversity of na-
ture, but makes the code easier to integrate with standard machine learning
libraries, for which Python is the de facto choice – we’re just planning ahead.
The absence of first-class inductive types in Python means we’ll have to use
the object-oriented abstract class pattern instead – I apologize in advance for
the mandatory eye bleach to follow. In spite of the impediments, our imple-
mentation of LP♢,□ proofs is as faithful as possible to the decomposition of

1Latest commit is 7e9e4c472df22582708ff03a35cf90718c17c60e.

https://github.com/konstantinosKokos/aethel
https://github.com/konstantinosKokos/aethel/tree/7e9e4c472df22582708ff03a35cf90718c17c60e

210 Dependency as Modality, Parsing as Permutation

Chapter I. We disentangle proofs and terms into distinct entities, following
our observations that the latter can be less informative than the former (e.g.
hiding structural brackets and structural rules, being equivalent under order
variations, etc.). Practically, proofs and terms are functionally related but not
equivalent, i.e. each proof induces or has a term, but a term is not a proof –
it might be either many or none. To carve a path to our objects of interest,
we will go from small to big, starting with the basic definitions of structures,
types, structural primitives, terms and rules.

1.1 Structures

Structures are implemented as an abstract class, parameterizable with respect
to their contents T. Structures must be traversable, representable and pairwise
comparable, and we must be able to check whether a structure contains an
object, where the notion of containment changes depending on the concrete
structure under scrutiny.

class Structure(abc.ABC, typing.Generic[T]):
def __repr__(self) -> str: ...
def __eq__(self, other) -> bool: ...
def __contains__(self, item) -> bool: ...

LP structures are multisets; yet in our use case we do care about order (even
if only in the representational sense) – we can treat them as sequences instead
(altering the notion of equality to account for permutation invariance if/when
necessary). The ♢, □modalities impose structure in the form of brackets – we
can treat them as unary containers. A container structure will carry a name
for its brackets; strictly speaking a tagged union object, but implemented as a
string. To canonicalize ambiguous representations and remain faithful to the
absence of tree-like recursion as described in Section 8.4.1, we impose that
a unary must necessarily contain a sequence (may as well be a singleton),
while a sequence can contain either unary structures or elementary objects
(i.e. no sequences of sequences). With this simple mutual induction in mind,
we arrive at the definitions below (the type hints serve as little more than
mental notes).

class Unary(Structure[T]):
content: Sequence[T]
brackets: str

class Sequence(Structure[T], typing.Sequence[T]):
structures: tuple[T | Unary[T], ...]

Implementation Notes 211

1.2 Types
Next, we take the inductive type grammar and break it into multiple classes,
starting with the abstract class that all concrete patterns inherit from.1 Types
must be representable and implement equality, while also providing auxiliary
functionalities like back-and-forth translations between prefix and infix nota-
tion, computing order, stripping modalities, etc.
class Type(abc.ABC):

def __repr__(self) -> str: ...
def __eq__(self, other) -> bool: ...
def __abs__(self) -> Type: ... # removes modalities
def order(self) -> int: ... # see I.9
def prefix(self) -> str: ...

@staticmethod
def parse_prefix(prefix: str) -> Type: ...

Different type patterns are then defined as different concrete classes. Atoms
are simple: they just contain a sign that allows their identification. Functors
are defined coordinate-wise (having an argument to the left of the arrow and
a result to the right). Modal quantifications obey the same abstraction (having
a content and a decoration), differing only in whether they are a diamond or
a box.
class Atom(Type):

sign: str

class Functor(Type):
argument: Type
result: Type

class Modal(Type, ABC):
content: Type
decoration: str

class Box(Modal):
...

class Diamond(Modal):
...

By inheritance, concrete type objects are instances of both their respective con-
struction patterns and the abstract class Type. On the basis of the above, we
implement a tiny calculator responsible for performing operations on types
and asserting their validity.
class TypeInference:

class TypeCheckError(Exception): ...

1Older implementations had Type be an abstract factory pattern, with each type-pattern be-
ing a concrete factory, with the intention of dynamically constructing types that are indeed distinct
python “types”. This would then allow the native creation of terms of the appropriate “type”.
In hindsight, the extra complexity was far from worth it – tangling up LP♢,□ types and Python
“types” offers little practical value aside the cheap thrill of calling type() on some proof object
and reading back an actual formula. The two implementations are mutually compatible, though.

212 Dependency as Modality, Parsing as Permutation

@staticmethod
def assert_equal(a: Type, b: Type) -> None: ...
@staticmethod
def arrow_elim(functor: Type, argument: Type) -> Type: ...
@staticmethod
def box_elim(inner: Type, box: str | None) -> tuple[Type, str]: ...
@staticmethod
def dia_elim(inner: Type, dia: str | None) -> tuple[Type, str]: ...

1.3 Terms

In the exact same vein, we have to define a painstaking number of different
classes to capture all the ways we can cook up a term. We’ll adorn terms with
types to ensure a first layer of well-typedness pertaining to logical constraints.
Rather than redundantly transcribe the type of all complex terms, we compute
it dynamically on the basis of their primitive parts and the operations that
bind them.

class Term(abc.ABC):
def __repr__(self) -> str: ...
def __eq__(self, other) -> bool: ...
def vars(self) -> Iterable[Variable]: ...
def constants(self) -> Iterable[Constant]: ...

@property
@abstractmethod
def type(self) -> Type: ...

On top of an index allowing their identification, variables and constants must
then also carry their types on their sleeve.

class Variable(Term):
type: Type
index: int

class Constant(Term):
type: Type
index: int

All other terms consist of subterms which allow the inductive computation
of their type. This is also used at instantiation time to assert that the term is
well-formed.

class ArrowElimination(Term):
function: Term
argument: Term

class ArrowIntroduction(Term):
abstraction: Variable
body: Term

class DiamondIntroduction(Term):

Implementation Notes 213

decoration: str
body: Term

class BoxElimination(Term):
decoration: str
body: Term

class BoxIntroduction(Term):
decoration: str
body: Term

Since we are encoding term patterns rather than proofs, it makes sense to de-
compose the term rewrite prescribed by the ♢E rule into the two different pat-
terns it involves: one for the actual removal of a diamond, done retroactively,
and one for the substitution, done locally.

class DiamondElimination(Term):
decoration: str
body: Term

class CaseOf(Term):
becomes: Term
where: Term
original: Term

This is already showing how proofs and terms diverge. A valid (sub-)term
is not necessarily a valid proof: its validity can only be asserted given some
external context (and under structural conditions it is blind to), in turn relying
on our definition of proof.

1.4 Proofs

To close the circle, we start by mimicking the definition of a judgement as an
antecedent structure of variables and constants and a succedent term (which
carries a type). As before, we restrict the assumptions to being a Sequence
for the sake of canonicalization.

class Judgement:
assumptions: Sequence[Variable | Constant]
term: Term

Proof constructors are the logic’s rules, which for the most part overlap with
term patterns. Exactly because of the exceptional cases where they don’t, we
need to actually implement them anew.

class Rule(enum.Enum):
def __repr__(self) -> str: ...
def __str__(self) -> str: ...
def __call__(self, *args, **kwargs) -> Proof: ...

214 Dependency as Modality, Parsing as Permutation

Rules are essentially implemented as enumerated types mapped to dynami-
cally checked operations on proofs. An organizational distinction is made be-
tween logical rules and the sole structural rule.

class Logical(Rule):
Variable = ...
Constant = ...
ArrowElimination = ...
ArrowIntroduction = ...
DiamondIntroduction = ...
BoxElimination = ...
BoxIntroduction = ...
DiamondElimination = ...

class Structural(Rule):
Extract = ...

At long last, we have all the components necessary to define a proof. A proof
is a record of zero or more premises (themselves proofs), a conclusion (a veri-
fied judgement), the last rule of inference used to bind the premises together
(an identifier of the previous enumeration), and maybe a variable under fo-
cus (used to tell which variable is abstracted over or substituted, for rules
⊸I and ♢E respectively). A proof has a structure (that of its conclusion’s
antecedent), a term (that of its conclusion succedent) and a type (that of its
term’s). Other than being comparable, representable and yada yada, and on
top of some proof-theoretic utilities, proof objects provide instance-level ac-
cess to the compositional operations implemented by rules, allowing (rela-
tively) easy bottom-up synthesis.

class Proof:
premises: tuple[Proof, ...]
conclusion: Judgement
rule: Rule
focus: Variable | None

def __repr__(self) -> str: ...
def __str__(self) -> str: ...
def __eq__(self, other) -> bool: ...

self-applied rule shortcuts
def apply(self, other: Proof) -> Proof: ...
def diamond(self, diamond: str) -> Proof: ...
def box(self, box: str) -> Proof: ...
def unbox(self, box: str | None) -> Proof: ...
def undiamond(self, where: Variable, becomes: Proof) -> Proof: ...
def abstract(self, var: Variable) -> Proof: ...
def extract(self, var: Variable) -> Proof: ...

def standardize_vars(self) -> Proof: ...
def eta_norm(self) -> Proof: ...
def beta_norm(self) -> Proof: ...
def is_linear(self) -> bool: ...
def subproofs(self) -> Iterator[Proof]: ...

Implementation Notes 215

Since we now have access to the full picture, rule applications are sufficiently
informed to assert all validity checks necessary, both logical and structural.

1.5 Examples

To see this in action, the snippets below showcase the construction of simple
proofs seen through Chapter I. But first, some type shortcuts to make our lifes
easier:

>>> A = Atom('A') # A
>>> B = Atom('B') # B
>>> C = Atom('C') # C
>>> bA = Box('a', A) # □a A
>>> dbA = Diamond('a', bA) # ♢a□a A
>>> dA = Diamond('a', A) # ♢a A
>>> bdA = Box('a', dA) # □a♢a A

Then a proof pattern shortcut that from a type and an index creates the identity
proof of the corresponding variable:

>>> def var(t: Type, i: int) -> Proof:
>>> return Logical.Variable(Variable(_type=t, index=i))

With these, we can create our first toy proofs, like the axiom of identity for
some type A or the function composition of A⊸B and B⊸C:

>>> (x := var(A, 0)).abstract(x.term)
⊢ (λx0.x0) : A⊸A
>>> x = var(A, 0)
>>> f = var(Functor(A, B), 1)
>>> g = var(Functor(B, C), 2)
>>> g.apply(f.apply(x)).abstract(x.term)
x2, x1 ⊢ (λx0.x2 (x1 x0)) : A⊸C

The story is no different for the modalities; here’s deriving the interior and
closure operators:

>>> var(A, 0).diamond('a').box('a')
x0 ⊢ ▽a(△a(x0)) : □a(♢a(A))
>>> (x := var(bA, 0)).unbox().undiamond(where=x.term,

becomes=var(dbA, 1))
x1 ⊢ case ▲a(x1) of x0 in ▼a(x0) : A

As long as we refrain from initializing proof objects manually or mutating
their values, rules will block us from making illegal moves:

>>> var(Functor(A, B), 0).apply(var(B, 1)
TypeCheckError: A⊸B is not a functor of B
>>> var(A, 0).box('a')
ProofError: x0 : A is not a singleton containing a unary

216 Dependency as Modality, Parsing as Permutation

2 Manipulating Æthel

To allow the incorporation of extra-theoretical information, proofs are repack-
aged with the sentence into a Sample record, containing also a name (the
Lassy identifier of the source file, plus a node identifier indicating the pruning
point) and a subset specification, imposing a canonical train/dev/test split.

class Sample:
lexical_phrases: tuple[LexicalPhrase, ...]
proof: Proof
name: str
subset: str

def __len(self)__ -> int: ...
def __repr__(self) -> str: ...
def show_term(self, show_types: bool, show_words: bool) -> str: ...

@property
def sentence(self) -> str: ...

Tokenization and token-level annotations are provided as a record field, pop-
ulated by breaking the sentence apart into a variadic tuple of lexical phrases.
Each lexical phrase consists of one or more lexical items, but is given a single
type assignment and enacts a singularly indexed proof constant. This organi-
zation is in line with the more liberal type lexicon demanded by multiword
units, and allows us to preserve lexical information that would be lost if we
were to simply just squeeze them into a single “word”. Multiwords aside, it
permits faithfully presenting a sentence together with its punctuation marks,
despite them not (usually) appearing in the compositional analysis. Finally,
it disassociates proofs from the concrete lexical constants justifying them, al-
lowing us to easily compare, filter and aggregate proofs detached from the
sentences they were assigned to.

class LexicalPhrase:
items: tuple[LexicalItem, ...]
type: Type

@property
def string(self) -> str: ...
def __repr__(self) -> str: ...
def __len__(self) -> int: ...

class LexicalItem:
word: str
pos: str
pt: str
lemma: str

Finally, the entire dataset is packaged into a ProofBank record; practically a
list of samples with some extra niceties on top, including indexing utilities and

Implementation Notes 217

a version field used to tell different temporal instances apart. Loading from a
binarized dump is done by a convenience static function.

class ProofBank:
version: str
samples: list[Sample]

def __getitem__(self, item: int) -> Sample: ...
def __len__(self) -> int: ...
def find_by_name(self, name: str) -> list[Sample]: ...
def __repr__(self) -> str: ...

@staticmethod
def load_data(path: str) -> ProofBank: ...

2.1 User Interface

User interface is barebones but practical. The user procures (some version of)
the source code from the official repository and a compatible binarized dump
of the dataset (download links are also provided there). From then on, the
dataset can easily be loaded as follows:

>>> from LassyExtraction import ProofBank
>>> aethel = ProofBank.load_data('path/to/dump')
Loading and verifying path/to/dump...
Loaded æthel version 1.x.x containing xxxxx samples.

Individual samples can be indexed numerically, or found by name, and their
attributes can be explored according to the earlier specifications; here’s in-
specting the sample of Figure III.9, for instance:

>>> sample = aethel.find_by_name('WS-U-E-A-0000000016.p.37.s.1(3)')[0]
>>> sample.sentence
"Auto's die niet starten"
>>> sample.lexical_phrases
(LexicalPhrase(string=Auto's, type=NP, len=1),
LexicalPhrase(string=die, type=(♢relcl(♢su(VNW)⊸SSUB))⊸□mod(NP⊸NP), len=1),
LexicalPhrase(string=niet, type=□mod(SSUB⊸SSUB), len=1),
LexicalPhrase(string=starten, type=♢su(VNW)⊸SSUB, len=1))
>>> sample.lexical_phrases[0].items[0]
LexicalItem(word="Auto's", pos='noun', pt='n', lemma='auto')
>>> sample.proof.structure
⟨c1, ⟨⟨c2⟩mod, c3⟩relcl⟩mod, c0
>>> sample.proof.term
▼mod(c1 △relcl((λx0.▼mod(c2) (c3 x0)))) c0 : NP

2.2 Visualization

Proofs and samples can be converted to pdf format for easier inspection; the
conversion utility simply follows along the inductive definitions of proofs and
terms, casting them into corresponding LATEX code. All proofs rendered in this

218 Dependency as Modality, Parsing as Permutation

document were built this way. Assuming you have pdflatex installed, you can
replicate this by running:

>>> from LassyExraction.utils.tex import compile_tex, sample_to_tex
>>> tex_code = sample_to_tex(sample)
>>> compile_tex(tex_code, './output.pdf') # see Figure III.9

2.3 Corpus Search

To facilitate corpus exploration, we provide search utilities in the form of
composable queries and a lazy search function. New queries can be made
bottom-up from custom boolean predicates applied to samples, or point-free
composed from existing queries using standard boolean operations. Preim-
plemented queries include searching for samples utilizing only (a subset of)
some rules, enumerating a specific number of constants, having some specific
word or lemma or being of a specific type, etc.

>>> from scripts.search import (search, contains_word,
>>> length_between, of_type)
>>> x = next(search(aethel, contains_word('vuur')
>>> & length_between(4, 7)))
>>> x.name
'WS-U-E-A-0000000004.p.28.s.3(1).xml'
>>> x.sentence
'Het vuur greep snel om zich heen .'

And here’s an example of what the creation of a primitive query looks like; we
start from the creation of a boolean predicate on samples that tells us whether
the opening letters of each word follow a reverse alphanumeric order:

def alphanumerically_ordered(sample: Sample) -> bool:
first_letters = [lp.string[0].lower()

for lp in sample.lexical_phrases]
return first_letters == sorted(set(first_letters), reverse=True)

which we can then wrap into a Query and compose it with a type condition
to find the longest sentence with alphanumerically descending initial word
letters:

>>> sample = sorted(search(aethel,
>>> Query(alphanumerically_ordered)
>>> & of_type(Atom('SMAIN')),
>>> key=len,
>>> reverse=True))[0]
>>> sample.sentence
'Ze vinden nog een bombrief ...'

Less (or more) ad-hoc searches can be similarly written, predicating over any
of the properties enclosed within a Sample; i.e. proof depth, maximal type
order, variable count, nestedness of verbal complements, presence of a part of
speech tag, or anything of the sort.

Implementation Notes 219

3 Neural Interfacing: Spindλe

A practical user-facing front integrating the neural proof search engine de-
scribed in Section 15 and the type system’s implementation can be found
at https://github.com/konstantinosKokos/spindle. To install, refer to the in-
structions provided online; they invole downloading the source code, installing
prerequisite packages and obtaining a copy of the pretrained model’s param-
eters. Aftewards, the model can be invoked using:

>>> from inference import InferenceWrapper
>>> inferer = InferenceWrapper(weight_path='/path/to/model/weights')

and analyses requisitioned with:

>>> analyses = inferer.analyze(
>>> ['omdat ik Henk haar de nijlpaarden zag helpen voeren',
>>> 'Wat is de lambda term van deze voorbeeldzin?'])

What we get back is a list of Python objects that partially abide by the Sample
protocol, each containing a field for lexical phrases and a proof, one such ob-
ject per input sentence. Lexical phrases are chunked by the supertagger, but
lemma and part of speech information are not provided. The compatibility
between parser-produced analyses and Æthel samples allows us to use on the
former methods originally intended for the latter. More importantly, it asserts
that what we get back is not a cheap, duck-typed imitation of a proof, but a
proof proper. The parser is by construction bound to either give us some proof,
or, if it fails, the reason for its failure.

>>> analyses[0].lexical_phrases
(LexicalPhrase(string=omdat, type=♢cmpbody(SSUB)⊸CP, len=1),
LexicalPhrase(string=ik, type=VNW, len=1),
LexicalPhrase(string=Henk, type=NP, len=1),
LexicalPhrase(string=haar, type=VNW, len=1),
LexicalPhrase(string=de, type=□det(N⊸NP), len=1),
LexicalPhrase(string=nijlpaarden, type=N, len=1),
LexicalPhrase(string=zag, type=♢vc(INF)⊸♢obj1(NP)⊸♢su(VNW)⊸SSUB,

len=1),↪→

LexicalPhrase(string=helpen, type=♢vc(INF)⊸♢obj1(VNW)⊸INF, len=1),
LexicalPhrase(string=voeren, type=♢obj1(NP)⊸INF, len=1))
>>> analyses[0].proof.term
c0 △cmpbody(c6 △vc(c7 △vc(c8 △obj1(▼det(c4) c5)) △obj1(c3)) △obj1(c2)

△su(c1)) : CP↪→

>>> analyses[1].lexical_phrases
(LexicalPhrase(string=Wat, type=(♢whbody(♢predc(VNW)⊸SV1))⊸WHQ,

len=1),↪→

LexicalPhrase(string=is, type=♢predc(VNW)⊸♢su(NP)⊸SV1, len=1),
LexicalPhrase(string=de, type=□det(N⊸NP), len=1),
LexicalPhrase(string=lambda, type=□mod(N⊸N), len=1),
LexicalPhrase(string=term, type=N, len=1),
LexicalPhrase(string=van, type=♢obj1(NP)⊸□mod(NP⊸NP), len=1),
LexicalPhrase(string=deze, type=□det(N⊸NP), len=1),
LexicalPhrase(string=voorbeeldzin, type=N, len=1),
LexicalPhrase(string=?, type=PUNCT, len=1))

https://github.com/konstantinosKokos/spindle

220 Dependency as Modality, Parsing as Permutation

>>> analyses[1].proof.term
c0 △whbody((λx0.c1 x0 △su(▼mod(c5 △obj1(▼det(c6) c7)) (▼det(c2)

(▼mod(c3) c4))))) : WHQ↪→

Samenvatting in het Nederlands

Sinds hun ontstaan zijn categoriale grammatica’s koplopers in de zoektocht
naar een formeel elegante, computationeel aantrekkelijke en voldoende flex-
ibele theorie van vorm en betekenis in natuurlijke taal. Ontwikkelingen in
de theoretische informatica hebben er gaandeweg toe geleid dat categoriale
grammatica’s in de traditie van J. Lambek in hun ware aard worden begrepen
als volwaardige typesystemen. Woorden krijgen de status van getypeerde con-
stanten, grammaticale regels voor hun interactie nemen de vorm aan van type
inferentieregels, die grotere woordgroepen opbouwen uit kleinere bouwste-
nen. Het eindresultaat van dat proces is tegelijkertijd een taalkundige anal-
yse, een logisch bewijs en een programma. Het overbrugt zo de ogenschijnlijk
ongelijksoortige gebieden van taalkunde, formele logica en informatica, en
vormt daarmee een manifestatie van het heilige drieluik van taal, logica en
rekenen. De traditionele aanpak van de overgang van vorm naar betekenis
bouwt voort op Montague’s idee van structuurbehoudende vertalingen die
nuances van het syntactische typesysteem vereenvoudigen of verwijderen om
te komen tot een uniforme en expressieve semantische calculus. Deze aanpak
is aantrekkelijk, maar hij leidt tot pragmatische problemen die de ontwikke-
ling van het categoriale onderzoeksprogramma in de weg staan. Om het se-
mantische niveau van betekenisopbouw te bereiken, heeft men geen andere
keuze dan te beginnen bij het moeilijkste deel, namelijk de typetheoretische
behandeling van de syntaxis van natuurlijke taal. Verschijnselen zoals ver-
plaatsing, variatie in woordvolgorde, discontinuı̈teiten en dergelijke vereisen
een zorgvuldige behandeling die algemeen genoeg moet zijn om het volledige
scala aan grammaticale uitingen te omvatten, maar tegelijkertijd strikt genoeg
om ongrammaticale uitingen uit te sluiten.

Dit proefschrift breekt met de traditie en richt zich rechtstreeks op een
diepere calculus van het grammaticale bouwproces die de details van de op-
pervlaktesyntaxis voor zover mogelijk buiten beschouwing laat. Waar func-
tionele syntactische typen voorheen gespecificeerd waren voor informatie die
hun lineaire ordening en plaats in een binaire boomstructuur bepaalt, gaan we

222 Dependency as Modality, Parsing as Permutation

hier over op een typetheorie die agnostisch is voor zowel hierarchische boom-
structuur als lineaire volgorde, met een geringere behoefte aan fijnmazige
syntactische onderscheidingen als resultaat. Deze vereenvoudiging leidt er
wel toe dat logische bewijsbaarheid en grammaticaliteit niet langer in de pas
lopen: de lakse typecalculus staat meer bewijzen toe dan taalkundig wenselijk
is. Om deze onderspecificatie gedeeltelijk te omzeilen, neemt het proefschrift
een extra stap weg van de gevestigde norm, door het typesysteem te verrijken
met unaire operatoren voor die het analytische bereik uitbreiden van gewone
functie-argumentstructuren naar functie-argumentstructuren met vaste gram-
maticale rollen. De nieuwe typecalculus produceert gemengde unaire/n-aire
bomen, waarbij elke unaire boom een dependentiedomein afbakent, en elke n-
aire boom eronder de uitdrukkingen die samen dit domein vormen. Hoewel
ze nog steeds ondergespecificeerd zijn, laten deze nieuwe unaire/n-aire struc-
turen zich lezen als niet-projectieve gelabelde dependentiebomen. Meer dan
dat, ze hebben hun wortels stevig in de typetheorie, wat de weg vrijmaakt
voor hun betekenisvolle semantische interpretatie.

Op een meer praktisch niveau en om de expressieve geschiktheid van
het formalisme te onderzoeken, is een algoritme ontworpen waarmee syntac-
tische analyses van Nederlandse zinnen, weergegeven als dependentiestruc-
turen (afkomstig van het kleine Lassy-corpus), omgezet kunnen worden in
bewijzen van de doellogica. De overgrote meerderheid van de Lassy invo-
eranalyses wordt met succes omgezet, wat aanleiding geeft tot een grote en
veelzijdige bewijsbank, een verzameling zinnen gecombineerd met semantis-
che stellingen en hun bijbehorende programma’s, en een uitgebreid typelex-
icon, dat typetoewijzingen biedt voor ongeveer een miljoen lexicale tokens
binnen een gegeven taalkundige context.

De bewijsbank en het onderliggende typelexicon kunnen beide worden ge-
bruikt als trainingsdata voor het ontwerpen en implementeren van een flexi-
bele stellingbewijzer, een neurosymbolisch systeem dat in staat is om efficiënt
door de uitgebreide zoekruimte van de typenlogica te navigeren.

Het systeem bestaat uit drie hoofdcomponenten die elkaar afwisselen bin-
nen de verwerkingspijplijn.

Component nummer één is een supertagger die verantwoordelijk is voor
het toewijzen van een type aan elk invoerwoord. De tagger gaat uit van een
hyperefficiënte heterogene grafenconvolutiekernel met state-of-the-art nauw-
keurigheid wat betreft datasets voor categoriale grammatica’s. In plaats van
typetoewijzingen te produceren in de vorm van voorwaardelijke kansen over
een vooraf gedefinieerd typevocabulaire, bouwt de supertagger in plaats daar-
van de typen dynamisch op, in overeenkomst met hun algebraı̈sche decom-
positie. Daarmee is de tagger niet beperkt door dataschaarsheid en onderverte-
genwoordiging, goed te generaliseren naar zeldzame typetoewijzingen en zelfs
in staat om correcte toewijzingen te produceren voor typen die nooit tijdens de
training zijn gezien. Component nummer twee is een neurale permutatiemod-
ule die het lineaire karakter van de doellogica benut om het zoeken naar be-
wijzen in de vorm te gieten van een proces van optimaal transportleren, waar-

Samenvatting in het Nederlands 223

bij voorzieningen (voorwaardelijke validiteiten) worden gekoppeld aan de
processen die ze nodig hebben (voorwaarden). Deze herformulering maakt
een gemakkelijk te optimaliseren implementatie mogelijk die berust op een
massief parallellisme, en die de onderbrekingen voor structuurmanipulatie
van conventionele parsers vermijdt. Component nummer drie is het typesys-
teem zelf, dat verantwoordelijk is voor het navigeren door de geproduceerde
bewijsstructuren en voor het daarmee vaststellen van hun welgevormdheid.
De resultaten tonen een efficiëntie superieur aan, en prestaties vergelijkbaar
met, de standaard basislijnen voor categoriale formalismen, en dat ondanks
de onderspecificatie inherent aan de gebruikte typenlogica.

Curriculum Vitae

Konstantinos was born in Thessaloniki, Greece in 1991. He obtained his en-
gineering diploma from the School of Electrical & Computer Engineering of
the Aristotle University of Thessaloniki with a specialization in Electronics &
Computers in 2017. Afterwards, he enrolled in the Artificial Intelligence MSc
programme of Utrecht University. He graduated cum laude in 2019 with a
specialization in Logic & Reasoning. During his second year as a graduate stu-
dent, he was offered employment as a PhD candidate in the NWO Project “A
composition calculus for vector-based semantic modelling with a localization
for Dutch” hosted by the Utrecht Institute of Linguistics OTS and supervised
by Michael Moortgat. This manuscript summarizes four years of research on
the topic.

	Acknowledgements
	Abstract
	Preface
	Papers this dissertation is based on
	Introduction
	The Simple Theory of Types
	Intuitionistic Logic
	Proof Equivalences

	The Curry-Howard Correspondence
	Term Equivalences
	In Place of a Summary

	Intermezzo

	Going Linear
	Linear Types
	Proof & Term Reductions

	Proof Nets

	Lambek Calculi
	Dropping Commutativity
	Proof & Term Reductions

	Dropping Associativity
	Proof & Term Reductions

	The Full Landscape

	Restoring Control
	The Logic of Modalities
	Proof & Term Reductions
	A Digression on Modal Terms
	Properties

	Structural Reasoning

	The Linguistic Perspective
	Type-Logical Grammars
	The Role of Modalities
	Intricacies of the Lexicon
	Subtleties of Proof Search
	Syntax-Semantics Interface

	Abstract Categorial Grammars
	Basic Definitions
	Artificial Languages
	Human Languages

	Alternatives

	Key References & Further Reading

	Chapter I Bibliography
	Typing Dependency Structure
	Phrase vs. Dependency Structure
	Phrase Structure Grammars
	Dependency Grammars

	Modalities for Dependency Demarcation
	Two Dimensional Predicates
	Modal Dependents
	Complements vs. Adjuncts
	Grammatical Functions

	Inference with Dependency-Enhanced Types
	Initial Lexical Adjustments
	Dependencies & Structural Reasoning

	Interfaces
	Dependency Trees
	Semantics

	Key References & Further Reading

	Chapter II Bibliography
	Proof Extraction
	Preliminaries
	Dutch
	Parsing: Recognition vs. Discovery
	Lassy

	Æthel
	Taming Lassy
	Edge Relabeling
	Non-Compositional Annotations
	There Can Be Only One (Head)
	Phrasal Restructuring

	Proving Lassy
	Proof Charming
	Parameters
	Tree Patterns
	Post-Processing

	Analysis
	Quantitative Obligations
	Quality Control

	Key References & Further Reading

	Chapter III Bibliography
	Learning to Prove
	The Categorial Parser
	Supertagging
	A Brief History of Supertagging
	Origins
	CCGbank and the Original Sin
	Distributed Word Vectors & Neural Networks
	Autoregressive Modeling
	Superwhat?

	Constructing Types
	Supertagging as NMT
	Buzzwords
	Implementation
	Experiments & Results
	Insights & Observations

	Geometric Constraints
	Geometry-Aware Supertagging
	Implementation
	Experiments & Results
	Insights & Observations

	Neural Proof Search
	Permuting Types to Alignment
	Neural Proof Nets
	Implementation(s)
	Experiments & Results
	Insights & Observations

	Proof Nets in LP0.90.90.90.9,0.850.850.850.85
	Traversal
	Negative Mode
	Positive Mode

	Key References & Further Reading

	Chapter IV Bibliography
	Conclusion
	Implementation Notes
	NLP with LP0.90.90.90.9,0.850.850.850.85
	Structures
	Types
	Terms
	Proofs
	Examples

	Manipulating Æthel
	User Interface
	Visualization
	Corpus Search

	Neural Interfacing: Spinde

	Samenvatting in het Nederlands
	Curriculum Vitae

